Wireless Broadband Access (BWA) Greenfield Ambition… (from March 2008)

In case you are contemplating starting a wireless broadband, maybe even mobile broadband, greenfield operation in Europe there will be plenty of opportunity the next 1 to 2 years.Will it be a great business in Western Europes mature market? – probably not – but it still might be worth pursuing. The mobile incumbants will have a huge edge when it comes to spectrum and capacity for growth which will be very difficult to compete against for a Greenfield with comparable limited spectrum.Upcoming 2.50 GHz to 2.69 GHz spectrum (i.e., 2.6 GHz for short) auctions, often refered to as the UMTS extension band spectrum, are being innitiated in several European countries (United Kingdom, The Netherlands, Sweden, etc..). Thus, we are talking about 190 MHz of bandwidth up for sale to the highest bidder(s). Compared this with the UMTS auction at the 2.1 GHz band which was 140 Mhz. The European Commission has recommended to split up the 190 MHz into 2×70 MHz for FDD operations (basically known as UMTS extension band in some countries) and a (minimum ) 1×50 MHz part for TDD operation.

In general it is expected that incumbent mobile operators (e.g., Vodafone, T-Mobile, KPN, Orange, Telefonica/O2, etc..) will bid for the 2.6 GHz FDD spectrum, supplementing their existing UMTS 2.10 GHz spectrum mitigating possible growth limitation they might foresee in the future. The TDD spectrum is in particular expected to be contended by new companies, greenfield operations as well as fixed-line operators (i.e, BT) with the ambition to launch broadband wireless access BWA (i..e, WiMAX) networks. Thus, new companies which intend to compete with today’s mobile operators and their mobile broadband data proporsitions. Furthermore, just as mobile operators with broadband data competes with fixed broadband business (i.e., DSL & cable); so is it expected that the new players would likewise compete with both existing fixed and mobile broadband data proporsitions. Obviously, new business might not limit their business models to broadband data but also provide voice offerings.

Thus, the competive climate would become stronger as more players contend for the same customers and those customer’s wallet.

Let’s analyse the Greenfields possible business model as the economical value of starting up a broadband data business in mature markets of Western Europe. The analysis will be done on a fairly high level which would give us an indication of the value of the Greenfield Business model as well as what options a new business would have to optimize that value.

FDD vs TDD Spectrum

The 2.6 GHz auction is in its principles assymetric, allocating more bandwidth to FDD based operation than to TDD-based Broadband Wireless Access (BWA) deployment; 2×70 MHz vs 1×50 MHz. It appears fair to assuming that most incumbent operators will target 2×20 MHz FDD which coincide with the minimum bandwidth target for the Next-Generation Mobile Network (NGMN)/Long-Term Evolution (LTE) Network vision (ref: 3GPP LTE).

For the entrant interested in the part of the 1×50 MHz TDD spectrum would in worst case need 3x the FDD spectrum to get an equivalent per sector capacity as an FDD player, i.e., 2×20 MHz FDD equivalent to 1×60 MHz TDD with a frequency re-use of 3 used by the TDD operator. Thus, in a like-for-like a TDD player would have difficulty matching the incumbants spectrum position at 2.6 GHz (ignoring the incumbant having a significantly stronger spectrum position from the beginning).

Of course better antenna systems (moving to re-use 1), improved radio resource management, higher spectral efficiency (i.e., Mbps/MHz) as well as improved overall link budgets might mitigate possible disadvantage in spectral assymmetry benefiting the TDD player. However, those advantages are more a matter of time before competing access technologies bridge an existing performance gab (technology equivalent tit-for-tat).

Comparing actual network performance of FDD-based UMTS/HSPA (High-Speed Packet Access) with WiMAX 802.16e-2005 the performance is roughly equivalent in terms of spectral efficiency. However, in general in Europe there has been allocated far more FDD-based spectrum than TDD-based which overall does result in a considerable capacity and growth issues for TDD-based business models. Long-Term Evolution (LTE) path is likely to be developed both for FDD and TDD based access and equivalent performance might be expected in terms of bits-per-second to Hz performance.

Thus, it is likely that a TDD-based network would become capacity limited sooner than a mobile operator having a full portfolio of FDD-based spectrum (i.e., 900 MHz (GSM), 1800 MHz (GSM), 2,100 MHz (FDD UMTS) and 2,500 MHz (FDD – UMTS/LTE) to its disposition. Therefore, a TDD based business model could be expected to look differently than an incumbants mobile operators existing business model.

The Greenfield BWA Business Case

Assume that Greenfield BWA intends to start-up its BWA business in a market with 17 million inhabitants, 7.4 million households, and a surface area of 34,000 km2. The Greenfield’s business model is based on house-hold coverage with focus on Urban and Sub-Urban areas covering 80% of the population and 60% of the surface area.

It is worth mentioning that the valuation approach presented here is high-level and should not replace proper financial modelling and due dilligence. This said, the following approach does provide a good guidance to the attractiveness of a business proporsition.

Greenfield BWA – The Technology Part

The first exercise the business modeller is facing is to size the network needed consistent with the business requirements and vision. How many radio nodes would be required to provide coverage and support the projected demand – is the question to ask! Given frequency and radio technology it is relative straightforward to provide a business model estimate of the site numbers needed.

Using standard radio engineering framework (e.g., Cost231 Walfish-Ikegami cell range model (Ref.:Cost321)) a reasonable estimate for a typical maximum cell range which can be expected subject to the radio environment (i.e, dense-city, urban, sub-urban and rural). Greenfield BWA intends to deploy (mobile) WiMAX at 2.6 GHz. Using the standard radio engineering formula a 1.5 km @ 2.6 GHz Uplink limited cell range is estimated. Uplink limited implies that the range between the Customer Premise Equipment (CPE) and the Basestation (BS) is shorter than the other direction from BS to CPE. This is a normal situation as the CPE equipment often is the limiting factor in network deployment considerations.

The 1.5-km cell range we have estimated above should be compared with typical cell ranges observed in actual mobile networks (e.g., GSM900, GSM1800 and UMTS2100). Typically in dense-city (i.e., Top-3 cities) areas, the cell range is between 0.5 and 0.7 km depending on load. In urban/metropolitan radio environment we often find an average between 2.0 – 2.5 km cell range depending on deployed frequency, cell load and radio environment. In sub-urban and rural areas one should expect an average cell range between 2.0 – 3.5 km depending on frequency and radio environment. Typically cell load would be more important in city and urban areas (i.e., less frequency dependence) while the frequency will be most important in sub-urban and rural areas (i.e., low-frequency => higher cell range => fewer sites; higher frequency => lower cell range => higher number of sites).The cell range (i.e., 1.5 km) and effective surface area targeted for network deployment (i.e., 20,000 km2) provides an estimate for the number of coverage driven sites of ca. 3,300 BWA nodes. Whether more sites would be needed due to capacity limitations can be assessed once the market and user models have been defined.

Using typical infrastructure pricing and site-build cost the investment level for Western Europe (i.e., Capital expenses, Capex) should not exceed 350 million Euro for the network deployment all included. Assuming that the related network operational expense can be limited to 10%(excluding personnel cost) of the cumulated Capex, we have a yearly Network related opex of 35 million Euro (after rollout target has been reached). After the the final deployment target has been reached the Greenfield should assume a capital expense level of minimum 10% of their service revenue.

It should not take Greenfield BWA more than 4 years to reach their rollout target. This can further be accelerated if Greenfield BWA can share existing incumbant network infrastructure (i.e., site sharing) or use independent tower companies services. In the following assume that the BWA site rollout can be done within 3 years of launch.

Greenfield BWA the Market & Finance Part

Greenfield BWA will target primarily the house-hold market with broadband wireless access services based on the WiMAX (i.e., 802.16e standard). Voice over IP will be supported and offered with the subscription.

Furthermore, the Greenfield BWA intends to provide stationary as well as normadic services to the house-hold segment. In addition Greenfield BWA also will provide some mobility in the areas they provide coverage. However, this would not be their primary concern and thus national roaming would not be offered (reducing roaming charges/cost).

Greenfield BWA reaches a steady-state (i.e., after final site rollout) customer market-share of 20% of the Household base; ca. 1.1 million household subscriptions on which they have a blended revenue per household €20 per month can be expected. Thus, a yearly service revenue of ca. 265 million Euro. From year 4 and onwards a maintenance Capex level of 25 million Euro is kept (i.e., ca. 10% of revenue).

Greenfield BWA manage its cost strictly and achieve an EBITDA margin of 40% from year 4 onwards (i.e, total annual operational cost of 160 million Euro).

Depreciation & Amortisation (D&A) level is kept at a level of $40 million annually (steady-state). Furthermore, Greenfield Inc has an effective tax rate of 30%.

Now we can actually estimate the free cash flow (FCF) Greenfield Inc would generate from the 4th year forward:

(all in million Euro)
Revenue €265
-Opex €158
=EBITDA €106
– D&A €40 (ignoring spectrum amortization)
– Tax €20 (i.e., 30%)
+ D&A €40
=Gross Cash Flow €86
-Capex €25
=FCF €61

assuming zero percent FCF growth rate and operating with a 10% (i.e., this could be largely optimistic for a pure Greenfield operation. Having 15% – 25% is not unheard off to reflect the high risks) Weighted Average Cost of Capital (i.e., WACC) the perpetuity value from year 4 onwards would be €610 million. In Present Value this is €416 million, net €288 million for the initial 3 years discounted capital investment (for network deployment) and considering the first 3 years cumulated discounted EBITDA 12 million provides

a rather weak business case of ca. 140 million (upper) valuation prior to spectrum investment where-of bulk valuation arises from the continuation value (i.e., 4 year onwards).

Alternative valuation would be to take a multiple of the EBITDA (4th year) as a sales price valuation equivalent; typically one would expect between 6x and 10x the (steady-state) EBITDA and thus €636 mio (6x) to €1,000 mio (10x).

The above valuation assumptions are optimistic and it is worthwhile to note the following;

1. €20 per month per household customer should be seen as optimistic upper value; lower and more realistic might not be much more than €15 per month.
2. 20% market share is ambitious particular after 3 years operation.
3. 40% margin with 15% customer share and 3,300 radio nodes is optimistic but might be possible if Greenfield BWA can make use of Network Sharing and other cost synergies in relation to for example outsourcing.
4. 10% WACC is assumed. This is rather low given start-up scenario. Would not be surprised that this could be estimated to be as high as 15% to 20%.If point 1 to 4 lower boundaries would be applied to above valuation logic the business case would very quickly turn in red (i.e., negative); leading to the conclusion of a significant business risk given the scope of above business model.Our hypothetical Greenfield BWA should target paying minimum license fee for the TDD spectrum; upper boundary should not exceed €50 million to mitigate too optimistic business assumptions.The City-based Operation Model

Greenfield BWA could choose to focus their business model on the top-10 cities and their metropolitan areas. Lets assume that by this 50% of population or house-holds are captured as well as 15% of the surface area. This should be compared with the above assumptions 80% population and 60% surface area coverage.

The key business drivers would look as follows (in paranthesis the previous values have been shown for reference).

Sites 850 (3,300) rollout within 1 to 2 years (3 years).
Capex €100 mio (€350) for initial deployment; afterwhich €18 mio (€25).

Customer 0.74 mio (1.1)
Revenue €178 mio (€264)
EBITDA €72 mio (€106)
Opex €108 mio (€160)
FCF €38 mio (€61)
Value €210 mio (€140)

The city-based network strategy is about 50% more valuable than a more extensive coverage strategy would be.

Alternative valuation would be to take a multiple of the EBITDA (3rd year) as the sales price valuation equivalent; typically one would expect between 6x and 10x the (steady-state) EBITDA and thus €432 mio (6x) to €720 mio (10x).

Interestingly (but not surprising!) Greenfield BWA would be better of focusing on smaller network but in areas of high population density is financially more attractive. Greenfield BWA should avoid coverage based rollout strategy known from the mobile operator business model.

The question is how important is it for the Greenfield BWA to provide coverage everywhere? if their target is primarily households based customers with normadic and static mobility requirements then such a “coverage where the customer is” business model might actually work?

Source: http://harryshell.blogspot.de/2008/03/wireless-broadband-access-bwa.html

, , , , ,

  1. #1 by free microsoft points no surveys no offers on June 18, 2014 - 11:39 pm

    Тhanks for finall writing аbout >Wireless Broadband Access (BWA) Greenfield Ambition (fгom March 2008) | techneconomyblkog <Loved it!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Machine Intelligence Blog

It's not Magic! It is mainly Linear Algebra Applied Creatively!


Thoughts on the Collaborative Economy

Things I tend to forget

if I don't write it down, I have to google for it again

Wireless End-to-End

A blog serving the wireless communications industry

P.a.p.-Blog – Human Rights Etc.

Human rights as seen from the perspective of politics, art, philosophy, law, economics, statistics and psychology.

%d bloggers like this: