"It doesn't matter how beautiful your idea is, it doesn't matter how smart or important you are. If the idea doesn't agree with reality, it's wrong", Richard Feynman (paraphrased)
It’s 2045. Earth is green again. Free from cellular towers and the terrestrial radiation of yet another G, no longer needed to justify endless telecom upgrades. Humanity has finally transcended its communication needs to the sky, fully served by swarms of Low Earth Orbit (LEO) satellites.
Millions of mobile towers have vanished. No more steel skeletons cluttering skylines and nature in general. In their place: millions of beams from tireless LEO satellites, now whispering directly into our pockets from orbit.
More than 1,200 MHz of once terrestrially-bound cellular spectrum below the C-band had been uplifted to LEO satellites. Nearly 1,500 MHz between 3 and 6 GHz had likewise been liberated from its earthly confines, now aggressively pursued by the buzzing broadband constellations above.
It all works without a single modification to people’s beloved mobile devices. Everyone enjoyed the same, or better, cellular service than in those wretched days of clinging to terrestrial-based infrastructure.
So, how did this remarkable transformation come about?
THE COVERAGE.
First, let’s talk about coverage. The chart below tells the story of orbital ambition through three very grounded curves. On the x-axis, we have the inclination angle, which is the degree to which your satellites are encouraged to tilt away from the equator to perform their job. On the y-axis: how much of the planet (and its people) they’re actually covering. The orange line gives us land area coverage. It starts low, as expected, tropical satellites don’t care much for Greenland. But as the inclination rises, so does their sense of duty to the extremes (the poles that is). The yellow line represents population coverage, which grows faster than land, maybe because humans prefer to live near each other (or they like the scenery). By the time you reach ~53° inclination, you’re covering about 94% of humanity and 84% of land areas. The dashed white line represents mobile cell coverage, the real estate of telecom towers. A constellation at a 53° inclination would cover nearly 98% of all mobile site infrastructure. It serves as a proxy for economic interest. It closely follows the population curve, but adds just a bit of spice, reflecting urban density and tower sprawl.
This chart illustrates the cumulative global coverage achieved at varying orbital inclination angles for three key metrics: land area (orange), population (yellow), and estimated terrestrial mobile cell sites (dashed white). As inclination increases from equatorial (0°) to polar (90°), the percentage of global land and population coverage rises accordingly. Notably, population coverage reaches approximately 94% at ~53° inclination, a critical threshold for satellite constellations aiming to maximize global user reach without the complexity of polar orbits. The mobile cell coverage curve reflects infrastructure density and aligns closely with population distribution.
The satellite constellation’s beams have replaced traditional terrestrial cells, providing a one-to-one coverage substitution. They not only replicate coverage in former legacy cellular areas but also extend service to regions that previously lacked connectivity due to low commercial priority from telecom operators. Today, over 3 million beams substitute obsolete mobile cells, delivering comparable service across densely populated areas. An additional 1 million beams have been deployed to cover previously unserved land areas, primarily rural and remote regions, using broader, lower-capacity beams with radii up to 10 kilometers. While these rural beams do not match the density or indoor penetration of urban cellular coverage, they represent a cost-effective means of achieving global service continuity, especially for basic connectivity and outdoor access in sparsely populated zones.
Conclusion? If you want to build a global satellite mobile network, you don’t need to orbit the whole planet. Just tilt your constellation enough to touch the crowded parts, and leave the tundra to the poets. However, this was the “original sin” of LEO Direct-2-Cellular satellites.
THE DEMAND.
Although global mobile traffic growth slowed notably after the early 2020s, and the terrestrial telecom industry drifted toward its “end of history” moment, the orbital network above inherited a double burden. Not only did satellite constellations need to deliver continuous, planet-wide coverage, a milestone legacy telecoms had never reached, despite millions of ground sites, but they also had to absorb globally converging traffic demands as billions of users crept steadily toward the throughput mean.
This chart shows the projected DL traffic across a full day (UTC), based on regions where local time falls within the evening Busy Hour window (17:00–22:00) and are within satellite coverage (minimum elevation ≥ 25°). The BH population is calculated hourly, taking into account time zone alignment and visibility, with a 20% concurrency rate applied. Each active user is assumed to consume 500 Mbps downlink in 2045. The peak, reaching overThis chart shows the uplink traffic demand experienced across a full day (UTC), based on regions under Busy Hour conditions (17:00–22:00 local time) and visible to the satellite constellation (with a minimum elevation angle of 25°). For each UTC hour, the BH population within coverage is calculated using global time zone mapping. Assuming a 20% concurrency rate and an average uplink throughput of 50 Mbps per active user, the total UL traffic is derived. The resulting curve reflects how demand shifts in response to the Earth’s rotation beneath the orbital band. The peak, reaching over
The radio access uplink architecture relies on low round-trip times for proper scheduling, timing alignment, and HARQ (Hybrid Automatic Repeat Request) feedback cycles. The propagation delay at 350 km yields a round-trip time of about 2.5 to 3 milliseconds, which falls within the bounds of what current specifications can accommodate. This is particularly important for latency-sensitive applications such as voice, video, and interactive services that require low jitter and reliable feedback mechanisms. In contrast, orbits at 550 km or above push latency closer to the edge of what NR protocols can tolerate, which could hinder performance or require non-standard adaptations. The beam geometry also plays a central role. At lower altitudes, satellite beams projected to the ground are inherently smaller. This smaller footprint translates into tighter beam patterns with narrower 3 dB cut-offs, which significantly improves frequency reuse and spatial isolation. These attributes are important for deploying high-capacity networks in densely populated urban environments, where interference and spectrum efficiency are paramount. Narrower beams allow D2C operators to steer coverage toward demand centers while minimizing adjacent-beam interference dynamically. Operating at 350 km is not without drawbacks. The satellite’s ground footprint at this altitude is smaller, meaning that more satellites are required to achieve full Earth coverage. Additionally, satellites at this altitude are exposed to greater atmospheric drag, resulting in shorter orbital lifespans unless they are equipped with more powerful or efficient propulsion systems to maintain altitude. The current design aims for a 5-year orbital lifespan. Despite this, the shorter lifespan has an upside, as it reduces the long-term risks of space debris. Deorbiting occurs naturally and quickly at lower altitudes, making the constellation more sustainable in the long term.
THE CONSTELLATION.
The satellite-to-cellular infrastructure has now fully matured into a global-scale system capable of delivering mobile broadband services that are not only on par with, but in many regions surpass, the performance of terrestrial cellular networks. At its core lies a constellation of low Earth orbit satellites operating at an altitude of 350 kilometers, engineered to provide seamless, high-quality indoor coverage for both uplink and downlink, even in densely urban environments.
To meet the evolving expectations of mobile users, each satellite beam delivers a minimum of 50 Mbps of uplink capacity and 500 Mbps of downlink capacity per user, ensuring full indoor quality even in highly cluttered environments. Uplink transmissions utilize the 600 MHz to 1800 MHz band, providing 1200 MHz of aggregated bandwidth. Downlink channels span 1500 MHz of spectrum, ranging from 2100 MHz to the upper edge of the C-band. At the network’s busiest hour (e.g., around 20:00 local time) across the most densely populated regions south of 53° latitude, the system supports a peak throughput of 60,000 Tbps for downlink and 6,000 Tbps for uplink. To guarantee reliability under real-world utilization, the system is engineered with a 25% capacity overhead, raising the design thresholds to 75,000 Tbps for DL and 7,500 Tbps for UL during peak demand.
Each satellite beam is optimized for high spectral efficiency, leveraging advanced beamforming, adaptive coding, and cutting-edge modulation. Under these conditions, downlink beams deliver 4.5 Gbps, while uplink beams, facing more challenging reception constraints, achieve 1.8 Gbps. Meeting the adjusted peak-hour demand requires approximately 16.7 million active DL beams and 4.2 million UL beams, amounting to over 20.8 million simultaneous beams concentrated over the peak demand region.
Thanks to significant advances in onboard processing and power systems, each satellite now supports up to 5,000 independent beams simultaneously. This capability reduces the number of satellites required to meet regional peak demand to approximately 4,200. These satellites are positioned over a region spanning an estimated 45 million square kilometers, covering the evening-side urban and suburban areas of the Americas, Europe, Africa, and Asia. This configuration yields a beam density of nearly 0.46 beams per square kilometer, equivalent to one active beam for every 2 square kilometers, densely overlaid to provide continuous, per-user, indoor-grade connectivity. In urban cores, beam radii are typically below 1 km, whereas in lower-density suburban and rural areas, the system adjusts by using larger beams without compromising throughput.
Because peak demand rotates longitudinally with the Earth’s rotation, only a portion of the entire constellation is positioned over this high-demand region at any given time. To ensure 4,200 satellites are always present over the region during peak usage, the total constellation comprises approximately 20,800 satellites, distributed across several hundred orbital planes. These planes are inclined and phased to optimize temporal availability, revisit frequency, and coverage uniformity while minimizing latency and handover complexity.
The resulting Direct-to-Cellular satellite constellation and system of today is among the most ambitious communications infrastructures ever created. With more than 20 million simultaneous beams dynamically allocated across the globe, it has effectively supplanted traditional mobile towers in many regions, delivering reliable, high-speed, indoor-capable broadband connectivity precisely where and when people need it.
When Telcos Said ‘Not Worth It,’ Satellites Said ‘Hold My Beam. In the world of 2045, even the last village at the end of the dirt road streams at 500 Mbps. No tower in sight, just orbiting compassion and economic logic finally aligned.
THE SATELLITE.
The Cellular Device to Satellite Path.
The uplink antennas aboard the Direct-to-Cellular satellites have been specifically engineered to reliably receive indoor-quality transmissions from standard (unmodified) mobile devices operating within the 600 MHz to 1800 MHz band. Each device is expected to deliver a minimum of 50 Mbps uplink throughput, even when used indoors in heavily cluttered urban environments. This performance is made possible through a combination of wideband spectrum utilization, precise beamforming, and extremely sensitive receiving systems in orbit. The satellite uplink system operates across 1200 MHz of aggregated bandwidth (e.g., 60 channels of 20 MHz), spanning the entire upper UHF and lower S-band. Because uplink signals originate from indoor environments, where wall and structural penetration losses can exceed 20 dB, the satellite link budget must compensate for the combined effects of indoor attenuation and free-space propagation at a 350 km orbital altitude. At 600 MHz, which represents the lowest frequency in the UL band, the free space path loss alone is approximately 133 dB. When this is compounded with indoor clutter and penetration losses, the total attenuation the satellite must overcome reaches approximately 153 dB or more.
Rather than specifying the antenna system at a mid-band average frequency, such as 900 MHz (i.e., the mid-band of the 600 MHz to 1800 MHz range), the system has been conservatively engineered for worst-case performance at 600 MHz. This design philosophy ensures that the antenna will meet or exceed performance requirements across the entire uplink band, with higher frequencies benefiting from naturally improved gain and narrower beamwidths. This choice guarantees that even the least favorable channels, those near 600 MHz, support reliable indoor-grade uplink service at 50 Mbps, with a minimum required SNR of 10 dB to sustain up to 16-QAM modulation. Achieving this level of performance at 600 MHz necessitated a large physical aperture. The uplink receive arrays on these satellites have grown to approximately 700 to 750 m² in area, and are constructed using modular, lightweight phased-array tiles that unfold in orbit. This aperture size enables the satellite to achieve a receive gain of approximately 45 dBi at 600 MHz, which is essential for detecting low-power uplink transmissions with high spectral efficiency, even from users deep indoors and under cluttered conditions.
Unlike earlier systems, such as AST SpaceMobile’s BlueBird 1, launched in the mid-2020s with an aperture of around 900 m² and challenged by the need to acquire indoor uplink signals, today’s Direct-to-Cellular (D2C) satellites optimize the uplink and downlink arrays separately. This separation allows each aperture to be custom-designed for its frequency and link budget requirements. The uplink arrays incorporate wideband, dual-polarized elements, such as log-periodic or Vivaldi structures, backed by high-dynamic-range low-noise amplifiers and a distributed digital beamforming backend. Assisted by real-time AI beam management, each satellite can simultaneously support and track up to 2,500 uplink beams, dynamically allocating them across the active coverage region.
Despite their size, these receive arrays are designed for compact launch configurations and efficient in-orbit deployment. Technologies such as inflatable booms, rigidizable mesh structures, and ultralight composite materials allow the arrays to unfold into large apertures while maintaining structural stability and minimizing mass. Because these arrays are passive receivers, thermal loads are significantly lower than those of transmit systems. Heat generation is primarily limited to the digital backend and front-end amplification chains, which are distributed across the array surface to facilitate efficient thermal dissipation.
The Satellite to Cellular Device Path.
The downlink communication path aboard Direct-to-Cellular satellites is engineered as a fully independent system, physically and functionally separated from the uplink antenna. This separation reflects a mature architectural philosophy that has been developed over decades of iteration. The downlink and uplink systems serve fundamentally different roles and operate across vastly different frequency bands, with their power, thermal, and antenna constraints. The downlink system operates in the frequency range from 2100 MHz up to the upper end of the C-band, typically around 4200 MHz. This is significantly higher than the uplink range, which extends from 600 to 1800 MHz. Due to this disparity in wavelength, a factor of nearly six between the lowest uplink and highest downlink frequencies, a shared aperture is neither practical nor efficient. It is widely accepted today that integrating transmit and receive functions into a single broadband aperture would compromise performance on both ends. Instead, today’s satellites utilize a dual-aperture approach, with the downlink antenna system optimized exclusively for high-frequency transmission and the uplink array designed independently for low-frequency reception.
In order to deliver 500 Mbps per user with full indoor coverage, each downlink beam must sustain approximately 4.5 Gbps, accounting for spectral reuse and beam overlap. At an orbital altitude of 350 kilometers, downlink beams must remain narrow, typically covering no more than a 1-kilometer radius in urban zones, to match uplink geometry and maintain beam-level concurrency. The antenna gain required to meet these demands is in the range of 50 to 55 dBi, which the satellites achieve using high-frequency phased arrays with a physical aperture of approximately 100 to 200 m². Because the downlink system is responsible for high-power transmission, the antenna tiles incorporate GaN-based solid-state power amplifiers (SSPAs), which deliver hundreds of watts per panel. This results in an overall effective isotropic radiated power (EIRP) of 50 to 60 dBW per beam, sufficient to reach deep indoor devices even at the upper end of the C-band. The power-intensive nature of the downlink system introduces thermal management challenges (describe below in the next section), which are addressed by physically isolating the transmit arrays from the receiver surfaces. The downlink and uplink arrays are positioned on opposite sides of the spacecraft bus or thermally decoupled through deployable booms and shielding layers.
The downlink beamforming is fully digital, allowing real-time adaptation of beam patterns, power levels, and modulation schemes. Each satellite can form and manage up to 2,500 independent downlink beams, which are coordinated with their uplink counterparts to ensure tight spatial and temporal alignment. Advanced AI algorithms help shape beams based on environmental context, usage density, and user motion, thereby further improving indoor delivery performance. The modulation schemes used on the downlink frequently reach 256-QAM and beyond, with spectral efficiencies of six to eight bits per second per Hz in favorable conditions.
The physical deployment of the downlink antenna varies by platform, but most commonly consists of front-facing phased array panels or cylindrical surfaces fitted with azimuthally distributed tiles. These panels can be either fixed or mounted on articulated platforms that allow active directional steering during orbit, depending on the beam coverage strategy, an arrangement also called gumballed.
No Bars? Not on This Planet. In 2045, even the Icebears will have broadband. When satellites replaced cell towers, the Arctic became just another neighborhood in the global gigabit grid.
Satellite System Architecture.
The Direct-to-Cellular satellites have evolved into high-performance, orbital base stations that far surpass the capabilities of early systems, such as AST SpaceMobile’s Bluebird 1 or SpaceX’s Starlink V2 Mini. These satellites are engineered not merely to relay signals, but to deliver full-featured indoor mobile broadband connectivity directly to standard handheld devices, anywhere on Earth, including deep urban cores and rural regions that have been historically underserved by terrestrial infrastructure.
As described earlier, today’s D2C satellite supports up to 5,000 simultaneous beams, enabling real-time uplink and downlink with mobile users across a broad frequency range. The uplink phased array, designed to capture low-power, deep-indoor signals at 600 MHz, occupies approximately 750 m². The DL array, optimized for high-frequency, high-power transmission, spans 150 to 200 m². Unlike early designs, such as Bluebird 1, which used a single, large combined antenna, today’s satellites separate the uplink and downlink arrays to optimize each for performance, thermal behavior, and mechanical deployment. These two systems are typically mounted on opposite sides of the satellite and thermally isolated from one another.
Thermal management is one of the defining challenges of this architecture. While AST’s Bluebird 1 (i.e., from mid-2020s) boasted a large antenna aperture approaching 900 m², its internal systems generated significantly less heat. Bluebird 1 operated with a total power budget of approximately 10 to 12 kilowatts, primarily dedicated to a handful of downlink beams and limited onboard processing. In contrast, today’s D2C satellite requires a continuous power supply of 25 to 35 kilowatts, much of which must be dissipated as heat in orbit. This includes over 10 kilowatts of sustained RF power dissipation from the DL system alone, in addition to thermal loads from the digital beamforming hardware, AI-assisted compute stack, and onboard routing logic. The key difference lies in beam concurrency and onboard intelligence. The satellite manages thousands of simultaneous, high-throughput beams, each dynamically scheduled and modulated using advanced schemes such as 256-QAM and beyond. It must also process real-time uplink signals from cluttered environments, allocate spectral and spatial resources, and make AI-driven decisions about beam shape, handovers, and interference mitigation. All of this requires a compute infrastructure capable of delivering 100 to 500 TOPS (tera-operations per second), distributed across radiation-hardened processors, neural accelerators, and programmable FPGAs. Unlike AST’s Bluebird 1, which offloaded most of its protocol stack to the ground, today’s satellites run much of the 5G core network onboard. This includes RAN scheduling, UE mobility management, and segment-level routing for backhaul and gateway links.
This computational load compounds the satellite’s already intense thermal environment. Passive cooling alone is insufficient. To manage thermal flows, the spacecraft employs large radiator panels located on its outer shell, advanced phase-change materials embedded behind the DL tiles, and liquid loop systems that transfer heat from the RF and compute zones to the radiative surfaces. These thermal systems are intricately zoned and actively managed, preventing the heat from interfering with the sensitive UL receive chains, which require low-noise operation under tightly controlled thermal conditions. The DL and UL arrays are thermally decoupled not just to prevent crosstalk, but to maintain stable performance in opposite thermal regimes: one dominated by high-power transmission, the other by low-noise reception.
To meet its power demands, the satellite utilizes a deployable solar sail array that spans 60 to 80 m². These sails are fitted with ultra-high-efficiency solar cells capable of exceeding 30–35% efficiency. They are mounted on articulated booms that track the sun independently from the satellite’s Earth-facing orientation. They provide enough current to sustain continuous operation during daylight periods, while high-capacity batteries, likely based on lithium-sulfur or solid-state chemistry, handle nighttime and eclipse coverage. Compared to the Starlink V2 Mini, which generates around 2.5 to 3.0 kilowatts, and the Bluebird 1, which operates at roughly 10–12 kilowatts. Today’s system requires nearly three times the generation and five times the thermal rejection capability compared to the initial satellites of the mid-2020s.
Structurally, the satellite is designed to support this massive infrastructure. It uses a rigid truss core (i.e., lattice structure) with deployable wings for the DL system and a segmented, mesh-based backing for the UL aperture. Propulsion is provided by Hall-effect or ion thrusters, with 50 to 100 kilograms of inert propellant onboard to support three to five years of orbital station-keeping at an altitude of 350 kilometers. This height is chosen for its latency and spatial reuse advantages, but it also imposes continuous drag, requiring persistent thrust.
The AST Bluebird 1 may have appeared physically imposing in its time due to its large antenna, thermal, computational, and architectural complexity. Today’s D2C satellite, 20 years later, far exceeds anything imagined two decades earlier. The heat generated by its massive beam concurrency, onboard processing, and integrated network core makes its thermal management system not only more severe than Bluebird 1’s but also one of the primary limiting factors in the satellite’s physical and functional design. This thermal constraint, in turn, shapes the layout of its antennas, compute stack, power system, and propulsion.
Mass and Volume Scaling.
The AST’s Bluebird 1, launched in the mid-2020s, had a launch mass of approximately 1,500 kilograms. Its headline feature was a 900 m² unfoldable antenna surface, designed to support direct cellular connectivity from space. However, despite its impressive aperture, the system was constrained by limited beam concurrency, modest onboard computing power, and a reliance on terrestrial cores for most network functions. The bulk of its mass was dominated by structural elements supporting its large antenna surface and the power and thermal subsystems required to drive a relatively small number of simultaneous links. Bluebird’s propulsion was chemical, optimized for initial orbit raising and limited station-keeping, and its stowed volume fit comfortably within standard medium-lift payload fairings. Starlink’s V2 Mini, although smaller in physical aperture, featured a more balanced and compact architecture. Weighing roughly 800 kilograms at launch, it was designed around high-throughput broadband rather than direct-to-cellular use. Its phased array antenna surface was closer to 20–25 m², and it was optimized for efficient manufacturing and high-density orbital deployment. The V2 Mini’s volume was tightly packed, with solar panels, phased arrays, and propulsion modules folded into a relatively low-profile bus optimized for rapid deployment and low-cost launch stacking. Its onboard compute and thermal systems were scaled to match its more modest power budget, which typically hovered around 2.5 to 3.0 kilowatts.
In contrast, today’s satellites occupy an entirely new performance regime. The dry mass of the satellite ranges between 2,500 and 3,500 kilograms, depending on specific configuration, thermal shielding, and structural deployment method. This accounts for its large deployable arrays, high-density digital payload, radiator surfaces, power regulation units, and internal trusses. The wet mass, including onboard fuel reserves for at least 5 years of station-keeping at 350 km altitude, increases by up to 800 kilograms, depending on the propulsion type (e.g., Hall-effect or gridded ion thrusters) and orbital inclination. This brings the total launch mass to approximately 3,000 to 4,500 kilograms, or more than double ATS’s old Bluebird 1 and roughly five times that of SpaceX’s Starlink V2 Mini.
Volume-wise, the satellites require a significantly larger stowed configuration than either AST’s Bluebird 1 or SpaceX’s Starlink V2 Mini. While both of those earlier systems were designed to fit within traditional launch fairings, Bluebird 1 utilizes a folded hinge-based boom structure, and Starlink V2 Mini is optimized for ultra-compact stacking. Today’s satellite demands next-generation fairing geometries, such as 5-meter-class launchers or dual-stack configurations. This is driven by the dual-antenna architecture and radiator arrays, which, although cleverly folded during launch, expand dramatically once deployed in orbit. In its operational configuration, the satellite spans tens of meters across its antenna booms and solar sails. The uplink array, built as a lightweight, mesh-backed surface supported by rigidizing frames or telescoping booms, unfolds to a diameter of approximately 30 to 35 meters, substantially larger than Bluebird 1’s ~20–25 meter maximum span and far beyond the roughly 10-meter unfolded span of Starlink V2 Mini. The downlink panels, although smaller, are arranged for precise gimballed orientation (i.e., a pivoting mechanism allowing rotation or tilt along one or more axes) and integrated thermal control, which further expands the total deployed volume envelope. The volumetric footprint of today’s D2C satellite is not only larger in surface area but also more spatially complex, as its segregated UL and DL arrays, thermal zones, and solar wings must avoid interference while maintaining structural and thermal equilibrium. Compared to the simplified flat-pack layout of Starlink V2 Mini and the monolithic boom-deployed design of Bluebird 1.
The increase in dry mass, wet mass, and deployed volume is not a byproduct of inefficiency, but a direct result of very substantial performance improvements that were required to replace terrestrial mobile towers with orbital systems. Today’s D2C satellites deliver an order of magnitude more beam concurrency, spectral efficiency, and per-user performance than its 2020s predecessors. This is reflected in every subsystem, from power generation and antenna design to propulsion, thermal control, and computing. As such, it represents the emergence of a new class of satellite altogether: not merely a space-based relay or broadband node, but a full-featured, cloud-integrated orbital RAN platform capable of supporting the global cellular fabric from space.
CAN THE FICTION BECOME A REALITY?
From the perspective of 2025, the vision of a global satellite-based mobile network providing seamless, unmodified indoor connectivity at terrestrial-grade uplink and downlink rates, 50 Mbps up, 500 Mbps down, appears extraordinarily ambitious. The technical description from 2045 outlines a constellation of 20,800 LEO satellites, each capable of supporting 5,000 independent full-duplex beams across massive bandwidths, while integrating onboard processing, AI-driven beam control, and a full 5G core stack. To reach such a mature architecture within two decades demands breakthrough progress across multiple fronts.
The most daunting challenge lies in achieving indoor-grade cellular uplink at frequencies as low as 600 MHz from devices never intended to communicate with satellites. Today, even powerful ground-based towers struggle to achieve sub-1 GHz uplink coverage inside urban buildings. For satellites at an altitude of 350 km, the free-space path loss alone at 600 MHz is approximately 133 dB. When combined with clutter, penetration, and polarization mismatches, the system must close a link budget approaching 153–160 dB, from a smartphone transmitting just 23 dBm (200 mW) or less. No satellite today, including AST SpaceMobile’s BlueBird 1, has demonstrated indoor uplink reception at this scale or consistency. To overcome this, the proposed system assumes deployable uplink arrays of 750 m² with gain levels exceeding 45 dBi, supported by hundreds of simultaneously steerable receive beams and ultra-low-noise front-end receivers. From a 2025 lens, the mechanical deployment of such arrays, their thermal stability, calibration, and mass management pose nontrivial risks. Today’s large phased arrays are still in their infancy in space, and adaptive beam tracking from fast-moving LEO platforms remains unproven at the required scale and beam density.
Thermal constraints are also vastly more complex than anything currently deployed. Supporting 5,000 simultaneous beams and radiating tens of kilowatts from compact platforms in LEO requires heat rejection systems that go beyond current radiator technology. Passive radiators must be supplemented with phase-change materials, active fluid loops, and zoned thermal isolation to prevent transmit arrays from degrading the performance of sensitive uplink receivers. This represents a significant leap from today’s satellites, such as Starlink V2 Mini (~3 kW) or BlueBird 1 (~10–12 kW), neither of which operates with a comparable beam count, throughput, or antenna scale.
The required onboard compute is another monumental leap. Running thousands of simultaneous digital beams, performing real-time adaptive beamforming, spectrum assignment, HARQ scheduling, and AI-driven interference mitigation, all on-orbit and without ground-side offloading, demands 100–500 TOPS of radiation-hardened compute. This is far beyond anything that will be flying in 2025. Even state-of-the-art military systems rely heavily on ground computing and centralized control. The 2045 vision implies on-orbit autonomy, local decision-making, and embedded 5G/6G core functionality within each spacecraft, a full software-defined network node in orbit. Realizing such a capability requires not only next-gen processors but also significant progress in space-grade AI inference, thermal packaging, and fault tolerance.
On the power front, generating 25–35 kW per satellite in LEO using 60–80 m² solar sails pushes the boundary of photovoltaic technology and array mechanics. High-efficiency solar cells must achieve conversion rates exceeding 30–35%, while battery systems must maintain high discharge capacity even in complete darkness. Space-based power architectures today are not yet built for this level of sustained output and thermal dissipation.
Even if the individual satellite challenges are solved, the constellation architecture presents another towering hurdle. Achieving seamless beam handover, full spatial reuse, and maintaining beam density over demand centers as the Earth rotates demands near-perfect coordination of tens of thousands of satellites across hundreds of planes. No current LEO operator (including SpaceX) manages a constellation of that complexity, beam concurrency, or spatial density. Furthermore, scaling the manufacturing, testing, launch, and in-orbit commissioning of over 20,000 high-performance satellites will require significant cost reductions, increased factory throughput, and new levels of autonomous deployment.
Regulatory and spectrum allocation are equally formidable barriers. The vision entails the massively complex undertaking of a global reallocation of terrestrial mobile spectrum, particularly in the sub-3 GHz bands, to LEO operators. As of 2025, such a reallocation is politically and commercially fraught, with entrenched mobile operators and national regulators unlikely to cede prime bands without extensive negotiation, incentives, and global coordination. The use of 600–1800 MHz from orbit for direct-to-device is not yet globally harmonized (and may never be), and existing terrestrial rights would need to be either vacated or managed via complex sharing schemes.
From a market perspective, widespread device compatibility without modification implies that standard mobile chipsets, RF chains, and antennas evolve to handle Doppler compensation, extended RTT timing budgets, and tighter synchronization tolerances. While this is not insurmountable, it requires updates to 3GPP standards, baseband silicon, and potentially network registration logic, all of which must be implemented without degrading terrestrial service. Although NTN (non-terrestrial networks) support has begun to emerge in 5G standards, the level of transparency and ubiquity envisioned in 2045 is not yet backed by practical deployments.
While the 2045 architecture described so far assumes a single unified constellation delivering seamless global cellular service from orbit, the political and commercial realities of space infrastructure in 2025 strongly suggest a fragmented outcome. It is unlikely that a single actor, public or private, will be permitted, let alone able, to monopolize the global D2C landscape. Instead, the most plausible trajectory is a competitive and geopolitically segmented orbital environment, with at least one major constellation originating from China (note: I think it is quit likely we may see two major ones), another from the United States, a possible second US-based entrant, and potentially a European-led system aimed at securing sovereign connectivity across the continent. This fracturing of the orbital mobile landscape imposes a profound constraint on the economic and technical scalability of the system. The assumption that a single constellation could achieve massive economies of scale, producing, launching, and managing tens of thousands of high-performance satellites with uniform coverage obligations, begins to collapse under the weight of geopolitical segmentation. Each competitor must now shoulder its own development, manufacturing, and deployment costs, with limited ability to amortize those investments over a unified global user base. Moreover, such duplication of infrastructure risks saturating orbital slots and spectrum allocations, while reducing the density advantage that a unified system would otherwise enjoy. Instead of concentrating thousands of active beams over a demand zone with a single coordinated fleet, separate constellations must compete for orbital visibility and spectral access over the same urban centers. The result is likely to be a decline in per-satellite utilization efficiency, particularly in regions of geopolitical overlap or contested regulatory coordination.
2045: One Vision, Many Launch Pads. The dream of global satellite-to-cellular service may shine bright, but it won’t rise from a single constellation. With China, the U.S., and others racing skyward, the economics of universal LEO coverage could fracture into geopolitical silos, making scale, spectrum, and sustainability more contested than ever.
Finally, the commercial viability of any one constellation diminishes when the global scale is eroded. While a monopoly or globally dominant operator could achieve lower per-unit satellite costs, higher average utilization, and broader roaming revenues, a fractured environment reduces ARPU (average revenue per user). It increases the breakeven threshold for each deployment. Satellite throughput that could have been centrally optimized now risks duplication and redundancy, increasing operational overhead and potentially slowing innovation as vendors attempt to differentiate on proprietary terms. In this light, the architecture described earlier must be seen as an idealized vision. This convergence point may never be achieved in pure form unless global policy, spectrum governance, and commercial alliances move toward more integrated outcomes. While the technological challenges of the 2045 D2C system are significant, the fragmentation of market structure and geopolitical alignment may prove an equally formidable barrier to realizing the full systemic potential. While a monopoly or globally dominant operator could achieve lower per-unit satellite costs, higher average utilization, and broader roaming revenues, a fractured environment reduces ARPU (average revenue per user). It increases the breakeven threshold for each deployment. Satellite throughput that could have been centrally optimized now risks duplication and redundancy, increasing operational overhead and potentially slowing innovation as vendors attempt to differentiate on proprietary terms. In this light, the architecture described earlier must be seen as an idealized vision. This convergence point may never be achieved in pure form unless global policy, spectrum governance, and commercial alliances move toward more integrated outcomes. While the technological challenges of the 2045 D2C system are significant, the fragmentation of market structure and geopolitical alignment may prove an equally formidable barrier to realizing the full systemic potential.
Heavenly Coverage, Hellish Congestion. Even a single mega-constellation turns the sky into premium orbital real estate … and that’s before the neighbors show up with their own fleets. Welcome to the era of broadband traffic … in space.
Despite these barriers, incremental paths forward exist. Demonstration satellites in the late 2020s, followed by regional commercial deployments in the early 2030s, could provide real-world validation. The phased evolution of spectrum use, dual-use handsets, and AI-assisted beam management may mitigate some of the scaling concerns. Regulatory alignment may emerge as rural and unserved regions increasingly depend on space-based access. Ultimately, the achievement of the 2045 architecture relies not only on engineering but also on sustained cross-industry coordination, geopolitical alignment, and commercial viability on a planetary scale. As of 2025, the probability of realizing the complete vision by 2045, in terms of indoor-grade, direct-to-device service via a fully orbital mobile core, is perhaps 40–50%, with a higher probability (~70%) for achieving outdoor-grade or partially integrated hybrid services. The coming decade will reveal whether the industry can fully solve the unique combination of thermal, RF, computational, regulatory, and manufacturing challenges required to replace the terrestrial mobile network with orbital infrastructure.
POSTSCRIPT – THE ECONOMICS.
The Direct-to-Cellular satellite architecture described in this article would reshape not only the technical landscape of mobile communications but also its economic foundation. The very premise of delivering mobile broadband directly from space, bypassing terrestrial towers, fiber backhaul, and urban permitting, undermines one of the most entrenched capital systems of the 20th and early 21st centuries: the mobile infrastructure economy. Once considered irreplaceable, the sprawling ecosystem of rooftop leases, steel towers, field operations, base stations, and fiber rings has been gradually rendered obsolete by a network that floats above geography.
The financial implications of such a shift are enormous. Before such an orbital transition described in this article, the global mobile industry invested well over 300 billion USD annually in network CapEx and Opex, with a large share dedicated to the site infrastructure layer, construction, leasing, energy, security, and upkeep of millions of base stations and their associated land or rooftop assets. Tower companies alone have become multi-billion-dollar REITs (i.e., Real Estate Investment Trusts), profiting from site tenancy and long-term operating contracts. As of the mid-2020s, the global value tied up in the telecom industry’s physical infrastructure is estimated to exceed 2.5 to 3 trillion USD, with tower companies like Cellnex and American Tower collectively managing hundreds of billions of dollars in infrastructure assets. An estimated $300–500 billion USD invested in mobile infrastructure represents approximately 0.75% to 1.5% of total global pension assets and accounts for 15% to 30% of pension fund infrastructure investments. This real estate-based infrastructure model defined mobile economics for decades and has generally been regarded as a reasonably safe haven for investors. In contrast, the 2045 D2C model front-loads its capital burden into satellite manufacturing, launch, and orbital operations. Rather than being geographically bound, capital is concentrated into a fleet of orbital base stations, each capable of dynamically serving users across vast and shifting geographies. This not only eliminates the need for millions of distributed cell sites, but it also breaks the historical tie between infrastructure deployment and national geography. Coverage no longer scales with trenching crews or urban permitting delays but with orbital plane density and beamforming algorithms.
Yet, such a shift does not necessarily mean lower cost, only different economics. Launching and operating tens of thousands of advanced satellites, each capable of supporting thousands of beams and running onboard compute environments, still requires massive capital outlay and ongoing expenditures in space traffic management, spectrum coordination, ground gateways, and constellation replenishment. The difference lies in utilization and marginal reach. Where terrestrial infrastructure often struggles to achieve ROI in rural or low-income markets, orbital systems serve these zones as part of the same beam budget, with no new towers or trenches required.
Importantly, the 2045 model would likely collapse the mobile value chain. Instead of a multi-layered system of operators, tower owners, fiber wholesalers, and regional contractors, a vertically integrated satellite operator can now deliver the full stack of mobile service from orbit, owning the user relationship end-to-end. This disintermediation has significant implications for revenue distribution and regulatory control, and challenges legacy operators to either adapt or exit.
The scale of economic disruption mirrors the scale of technical ambition. This transformation could rewrite the very economics of connectivity. While the promise of seamless global coverage, zero tower density, and instant-on mobility is compelling, it may also signal the end of mobile telecom as a land-based utility.
If this little science fiction story comes true, and there are many good and bad reasons to doubt it, Telcos may not Ascend to the Sky, but take the Stairway to Heaven.
Graveyard of the Tower Titans. This symbolic illustration captures the end of an era, depicting headstones for legacy telecom giants such as American Tower, Crown Castle, and SBA Communications, as well as the broader REIT (Real Estate Investment Trust) infrastructure model that once underpinned the terrestrial mobile network economy. It serves as a metaphor for the systemic shift brought on by Direct-to-Cellular (D2C) satellite networks. What’s fading is not only the mobile tower itself, but also the vast ancillary industry that has grown around it, including power systems, access rights, fiber-infrastructure, maintenance firms, and leasing intermediaries, as well as the telecom business model that relied on physical, ground-based infrastructure. As the skies take over the signal path, the economic pillars of the old telecom world may no longer stand.
I would like to acknowledge my wife, Eva Varadi, for her unwavering support, patience, and understanding throughout the creative process of writing this article.
Over the last three years, I have extensively covered the details of the Western European telecom sector’s capital expense levels and the drivers behind telecom companies’ capital investments. These accounts can be found in “The Nature of Telecom Capex—a 2023 Update” from 2023 and my initial article from 2022. This new version of “The Nature of Telecom Capex – a 2024 Update” is also different compared to the issues of 2022 and 2023 in that it focuses on the near future Capex demands from 2024 to 2030 and what we may expect from our Industry capital spending over the next 7 years.
For Western Europe, Capex levels in 2023 were lower than in 2022, a relatively rare but not unique occurrence that led many industry analysts to conclude the “End of Capex” and that from now on, “Capex will surely decline.” The compelling and logical explanations were also evident, pointing out that “data traffic (growth) is in decline”, “overproduction of bandwidth”, “5G is not what it was heralded to be”, “No interest in 6G”, “Capital is too expensive” and so forth. These “End to Capex” conclusions were often made on either aggregated data or selected data, depending on the availability of data.
Having worked on Capex planning and budgeting since the early 2000s for one of the biggest telecom companies in Europe, Deutsche Telecom AG, building what has been described as best-practice Capex models, my outlook is slightly less “optimistic” about the decline and “End” of Capex spending by the Industry. Indeed, for those expecting that a Telco’s capital planning is only impacted by hyper-rational insights glued to real-world tangibles and driven by clear strategic business objectives, I beg you to modify that belief somewhat.
Figure 1 illustrates the actual telecom Capex development for Western Europe between 2017 and 2023, with projected growth from 2024 (with the first two quarters’ actual Capex levels) to 2026, represented by the orange-colored dashed lines. The light dashed line illustrates the annual baseline Capex level before 5G and fiber deployment acceleration. The light solid line shows the corresponding Telco Capex to Revenue development, including an assessment for 2024 to 2026, with an annual increase of ca. 500 million euros. Source:New Street Research European Quarterly Review, covering 15 Western European countries (see references at the end of the blog) and 56+ telcos from 2017 to 2024, with 2024 covering the year’s first two quarters.
Western Europe’s telecommunications Capex fell between 2022 and 2023 for the first time in some years, from the peak of 51 billion euros in 2022. The overall development from 2017 to 2023 is illustrated below, including a projected Capex development covering 2024 to 2026 using each Telco’s revenue projections as a simple driver for the expected Capex level (i.e., inherently assuming that the planned Capex level is correlated to the anticipated, or targeted, revenue of the subsequent year).
The reduction in Capex between 2022 and 2023 comes from 29 out of 56 Telcos reducing their Capex level in 2023 compared to 2022. In 8 out of 15 countries, the Telco Capex levels were decreased by ca. 2.3 billion euros compared to their 2022 Capex levels. Likewise, 7 countries spent approximately 650 million euros more than their 2022 levels together. If we compared the 1st and 2nd half of 2023 with 2022, there was an unprecedented Capex reduction in the 2nd half of 2023 compared to any other year from 2017 to 2023. It really gives the impression that many ( at least 36 out of 56) Telcos put their feet on the break in 2023. 29 Telcos out of the 36 broke their spending in the last half of 2023 and ended the year with an overall lower spending than in 2022. Of the 8 countries with a lower Capex spend in 2023, the UK, France, Italy, and Spain make up more than 80%. Of the countries with a higher Capex in 2023, Germany, Netherlands, Belgium, and Austria make up more than 80%.
For a few of the countries with lower Capex levels in 2023, one could argue that they more or less finished their 5G rollout and have so high fiber-to-the-home penetration levels that more fiber is on account of overbuilt and of a substantially smaller scale than in the past (e.g., France, Norway, Spain, Portugal, Denmark, and Sweden). For other countries with a lower investment level than the previous year, such as the UK, Italy, and Greece, 2022 and 2023 saw substantial consolidation activity in the markets (e.g., Vodafone UK & C.K. Hutchinson 3, Wind Hellas rounded up in Nova Greece, …). In fact, Spain (e.g., Masmovil), Norway (e.g., Ice Group), and Denmark (e.g., Telia DK) also experienced consolidation activities that will generally lower companies’ spending levels initially. One would expect, as to some extent visible in the first half of 2024, that countries that spend less due to consolidation activities would increase their Capex levels in the next two to three years after an initial replanning period.
WESTERN EUROPE – THE BIG CAPEX OVERVIEW.
Figure 2 Shows on a country-level the 5-year average Capex spend (over the period 2019 to 2023) and the Capex in 2023. Source:New Street Research European Quarterly Review 2017 to 2024 (Q2).
When attempting to understand Telco Capex, or any Capex with a “built-in” cyclicity, one really should look at more than one or two years. Figure 2 above provides the comparison with the average Capex spend over the period 2019 to 2023 and the Capex spend in 2023. The five year Capex average captures the initial stages of 5G deployment in Europe, 5G deployment in general, COVID capacity investments (in fixed networks), the acceleration of Fiber rollout in many countries in Europe (e.g., Germany, UK, Netherlands, …), the financial (inflationary) crisis of increasing costly capital, and so forth. In my opinion 2023 is a reflection of the 2021-2022 financial crisis and that most of the 5G has been deployed to cover current market needs. As we have seen before, Telco investments are often 12 to 18 month out of synch with financial crisis years, and thus it is from that perspective also not surprising that 2023 might be a lower Capex year than in the past. Although, as is also evident from Figure 2, only 5 countries had a lower Capex level in 2023 than the previous 5 years average level.
Figure 3 Illustrates the Capex development over the last 5 years from 2019 to 2023 with the color Green showing years where the subsequent year had a higher Capex level, and color Red that the subsequent year had a lower Capex level. From a Western Europe perspective only 2023 had a lower Capex level than the previous year (compared to the last 5 years). Source:New Street Research European Quarterly Review 2017 to 2024 (Q2).
Using Capex to Revenue ratios of the Telco industry are prone to some uncertainty. This is particular the case when individual Telcos are compared. In general, I recommend to make comparisons over a given period of time, like 3 or 5 year periods, as it averages out some of the natural variation between Telcos and countries (e.g., one country or Telco may have started its 5G deployment earlier than others). Even that approach has to be taken with some caution as some Telcos may fully incur Capex for fiber deployments and others may make wholesale agreements with open Fiberco’s (for example) and only incur last-mile access or connection Capex. Although, of smaller relative Capex scale nowadays, Telcos increasingly have Towercos managing and building their passive infrastructure for their cell site demand. Some may still fully build their own cell sites, incurring proportionally higher Capex per new site deployed, which of course may lead to structural Capex differences between such Telcos. Having these cautionary remarks in mind, I believe that Capex to Revenue ratios does provide a means of comparing Countries or Telcos and it does give provide a picture of the capital investment intensity compared to the market performance. A country comparison of the 5-year (period: 2019 to 2023) average Capex to Revenue ratio is illustrated in Figure 3 below for the 15 markets considered in this blog.
Figure 4 Shows on a country-level the 5-year average Capex to Revenue ratios over the period 2019 to 2023. Source:New Street Research European Quarterly Review 2017 to 2024 (Q2).
Comparing Capex per capita and Capex as a percentage of GDP may offer insights into how capital investments are prioritized in relation to population size and economic output. These two metrics could highlight different aspects of investment strategies, providing a more comprehensive understanding of national economic priorities and critical infrastructure development levels. Such a comparison is show in Figure 15 below.
Capex per capita, shown in Figure 5 left hand side, measures the average amount of investment allocated to each person within a country. This metric is particularly useful for understanding the intensity of investment relative to the population, indicating how much infrastructure, technology, or other capital resources are being made available on a per-person basis. A higher Capex per capita suggests significant investment in areas like public services, infrastructure, or economic development, which could improve quality of life or boost productivity. Comparing this measure across countries helps identify disparities in investment levels, revealing which nations are placing greater emphasis on infrastructure development or economic expansion. For example, a country with a high Capex per capita likely prioritizes public goods such as transportation, energy, or digital infrastructure, potentially leading to better economic outcomes and higher living standards over time. The 5-year average Capex level does show a strong positive linear relationship with the Country population (R² = 0.9318, chart not shown), suggesting that ca. 93% of the variation in Capex can be explained by the variation in population. The trend implies that as the population increases, Capex also tends to increase, likely reflecting higher investment needs to accommodate larger populations. It should be noted that that a countries surface area is not a significant factor influencing Capex. While some countries with larger land areas might exhibit a higher Capex level, the overall trend is not strong.
Capex as a percentage of GDP, shown in Figure 5 right hand side, measures the proportion of a country’s economic output devoted to capital investment. This ratio provides context for understanding investment levels relative to the size of the economy, showing how much emphasis is placed on growth and development. A higher Capex-to-GDP ratio can indicate an aggressive investment strategy, commonly seen in developing economies or countries undergoing significant infrastructure expansion. Conversely, a lower ratio might suggest efficient capital allocation or, in some cases, underinvestment that could constrain future economic growth. This metric helps assess the sustainability of investment levels and reflects economic priorities. For instance, a high Capex-to-GDP ratio in a developed country could indicate a focus on upgrading existing infrastructure, whereas in a developing economy, it may signify efforts to close infrastructure gaps, modernization efforts (e.g., optical fiber replacing copper infrastructure per fixed broadband transformation) and accelerating growth. The 5-year average Capex level does show a strong positive linear relationship with the Country GDP (R² = 0.9389, chart not shown), suggesting that ca. 94% of the variation in Capex can be explained by the variation in the country GDP. While a few data points show some deviation from this trend, the overall fit is very strong, reinforcing the notion that larger economies generally allocate more resources to capital investments.
The insights gained from both Capex per capita and Capex as a percentage of GDP are complementary, providing a fuller picture of a country’s investment strategy. While Capex per capita reflects individual investment levels, Capex as a percentage of GDP reveals the scale of investment in relation to the overall economy. For example, a country with high Capex per capita but a low Capex-to-GDP ratio (e.g., Denmark, Norway, …) may have a wealthy population where individual investment levels are significant, but the size of the economy is such that these investments constitute a relatively small portion of total economic activity. Conversely, a country with a high Capex-to-GDP ratio but low Capex per capita (e.g., Greece) may be dedicating a substantial portion of its economic resources to infrastructure in an effort to drive growth, even if the per-person investment remains modest.
Figure 5 Illustrates two charts that compare the average capital expenditures over a 5-year period from 2019 to 2023. The left chart shows Capex per capita in euros, with Switzerland leading at 230 euros, while Spain has the lowest at 75 euros. The right chart depicts Capex as a percentage of GDP, where Greece tops the list at 0.47%, and Sweden is at the bottom with 0.16%. These metrics provide insights into how different countries allocate investments relative to their population size and economic output, revealing varying levels of investment intensity and economic priorities. It should be noted that Capex levels are strongly correlated with both the size of the population and the size of the economy as measured by the GDP. Source:New Street Research European Quarterly Review 2017 to 2024 (Q2).
FORWARD TO THE PAST.
Almost 15 years ago, I gave a presentation at the “4G World China” conference in Beijing titled “Economics of 4G Introduction in Growth Markets”. The idea was that a mobile operator’s capital demand would cycle between 8% (minimum) and 13% (maximum), usually with one replacement cycle before migrating to the next-generation radio access technology. This insight was backed up by best-practice capital demand models considering market strategy and growth Capex drivers. It involved also involved the insights of many expert discussions.
Figure 6 illustrates my expectations of how Capex would relate before, during, and after LTE deployment in Western Europe. Source:“Economics of 4G Introduction in Growth Markets” at “4G World China”, 2011.
For the careful observer, you will see that I expected, back in 2011, the typical Capex maintenance cycle in Western European markets between infrastructure and technology modernization periods to be no more than 8% and that Capex in the maintenance years would be 30% lower than required in the peak periods. I have yet to see a mobile operation with such a low capital intensity unless they effectively share their radio access network and/or by cost-structure “magic” (i.e., cost transformation), move typical mobile Capex items to Opex (by sourcing or optimizing the cost structure between fixed and mobile business units).
I retrospectively underestimated the industry’s willingness to continue increasing capital investments in existing networks, often ignoring the obvious optimization possibilities between their fixed and mobile broadband networks (due to organizational politics) and, of course, what has and still is a major industrial contagious infliction: “Metus Crescendi Exponentialis” (i.e., the fear of the exponential growth aka the opportunity to spend increasingly lots of Capex). From 2000 to today, the Western European Capex to Revenue ratio has been approximately between 11% and 21%, although it has been growing since around 2012 (see details in “The Nature of Telecom Capex—a 2023 Update”).
CAPEX DEVELOPMENT FROM 2024 TO 2026.
From the above Figure 1, it should be no surprise that I do not expect Capex to continue to decline substantially over the next couple of years, as we saw between 2022 and 2023. In fact, I anticipate that 2024 will be around the level of 2023, after which we will experience modest annual increases of 600 to 700 million euros. Countries with high 5G and Fiber-to-the-Home (FTTH) coverage (e.g., France, Netherlands, Norway, Spain, Portugal, Denmark, and Sweden) will keep their Capex levels possible with some modest declines with single-digit percentage points. Countries such as Germany, the UK, Austria, Belgium, and Greece are still European laggards in terms of FTTH coverage, being far below the 80+% of other Western European countries such as France, Spain, Portugal, Netherlands, Denmark, Sweden, and Norway. Such countries may be expected to continue to increase their Capex as they close the FTTH coverage gap. Here, it is worth remembering that several fiber acquisition strategies aiming at connecting homes with fiber result in a lower Capex than if a Telco aims to build all the required fiber infrastructure.
Consolidation Capex.
Telecom companies tend to scale back Capex during consolidation due to uncertainty, the desire to avoid redundancy, and the need to preserve cash. However, after regulatory approval and the deal’s closing, Capex typically rises as the company embarks on network integration, system migration, and infrastructure upgrades necessary to realize the merger’s benefits. This post-merger increase in Capex is crucial for achieving operational synergies, enhancing network performance, and maintaining a competitive edge in the telecom market.
If we look at the period 2021 to 2024, we have had the following consolidation and acquisition examples:
UK: In May 2021, Virgin Media and the O2 (Telefonica) UK merger was approved. They announced the intention to consolidate on May 7th, 2020.
UK: Vodafone UK and Three UK announced their intention to merge in June 2023. The final decision is expected by the end of 2024.
Spain: Orange and MasMovil announced their intent to consolidate in July 2023. Merger approval was given in February 2024. Conditions were imposed on the deal for MasMovil to divestitures its frequency spectrum.
Italy: The potential merger between Telecom Italia (TIM) and Open Fiber was first discussed in 2020 when the idea emerged to create a national fiber network in Italy by merging TIM’s fixed access unit, FiberCop, with Open Fiber. a Memorandum of Understanding was signed in May 2022.
Greece: Wind Hellas acquisition by United Group (Nova) was announced in August 2021 and finalized in January 2022 (with EU approval in December 2021).
Denmark: Norlys’s acquisition of Telia Denmark was first announced on April 25, 2023, and approved by the Danish competition authority in February 2024.
Thus, we should also expect that the bigger in-market consolidations may, in the short term (next 2+ years), lead to increased Capex spending during the consolidation phase, after which Capex (& Opex) synergies hopefully kick in. Typically, 2 budgetary cycles minimum before this would be expected to be observed. Consolidation Capex usually amounts to a couple of percentage points of total consolidated revenue, with some other bigger items being postponed to the tail end of a consolidation unless it is synergetic with the required integration.
The High-risk Suppler Challenge to Western Europe’s Telcos.
When assessing whether Capex will increase or decrease over the next few years (e.g., up to 2030), we cannot ignore the substantial Capex amounts associated with replacing high-risk suppliers (e.g., Huawei, ZTE) from Western European telecom networks. Today, the impact is mainly on mobile critical infrastructure, which is “limited” to core networks and 5G radio access networks (although some EU member states may have extended the reach beyond purely 5G). Particularly if (or when?) the current European Commission’s 5G Toolbox (legal) Framework (i.e., “The EU Toolbox for 5G Security”) is extended to all broadband network infrastructure (e.g., optical and IP transport network infrastructure, non-mobile backend networking & IT systems) and possibly beyond to also address Optical Network Terminal (ONT) and Customer Premise Equipment (note: ONT’s can be integrated in the CPE or alternatively separated from the CPE but installed at the customers premise). To an extent, it is thought-provoking that the EU emphasis has only been on 5G-associated critical infrastructure rather than the vast and ongoing investment of fiber-optical, next-generation fixed broadband networks across all European Union member states (and beyond). In particular, this may appear puzzling when the European Union has subsidized these new fiber-optical networks by up to 50%. Considering that the fixed-broadband traffic is 8 to 10 times that of the mobile traffic, and all mobile (and wireless) traffic passes through the fixed broadband network and associated local as well as global internet critical infrastructure.
As far back as 2013, the European Parliament raised some concerns about the degree of involvement (market share) of Chinese companies in the EU’s telecommunications sector. It should be remembered that in 2013, Europe’s sentiment was generally positive and optimistic toward collaboration with China, as evidenced by the European Commission’s report “EU-China 2020 Strategic Agenda for Cooperation” (2013). Historically, the development of the EU’s 5G Toolbox for Security was the result of a series of events from about 2008 (after the financial crisis) to 2019 (and to today), characterized by growing awareness in Europe of China’s strategic ambitions, the expansion of the BRI (Belt and Road Initiative, 2013), DSR (Digital Silk Road, an important part of BRI 2.0, 2015), and China’s National Intelligence Law (2017) requiring Chinese companies to cooperate with the Chinese Government on intelligence matters, as well as several high-profile cybersecurity incidents (e.g., APT, Operation Cloud Hopper, …), and increased scrutiny of Chinese technology providers and their influence on critical communications infrastructure across pretty much the whole of Europe. These factors collectively drove the EU to adopt a more cautious and coordinated approach to addressing security risks in the context of 5G and beyond.
Figure 7 illustrates Western society, including Western Europe, ‘s concern about Chinese technology presence in its digital infrastructure. A substantial “hidden” capital expense (security debt) is tied to Western Telco’s telecom infrastructures, mobile and fixed.
The European Commission’s 2023 second report on the implementation of the EU 5G cybersecurity toolbox offers an in-depth examination of the risks posed by high-risk suppliers, focusing on Chinese-origin infrastructure, such as equipment from Huawei and ZTE. The report outlines the various stages of implementation across EU Member States and provides recommendations on how to mitigate risks associated with Chinese infrastructure. It considers 5G and fixed broadband networks, including Customer Premise Equipment (CPE) devices like modems and routers placed at customer sites.
The EU Commission defines a high-risk supplier in the context of 5G cybersecurity based on several objective criteria to reduce security threats in telecom networks. A supplier may be classified as high-risk if it originates from a non-EU country with strong governmental ties or interference, particularly if its legal and political systems lack democratic safeguards, security protections, or data protection agreements with the EU. Suppliers susceptible to governmental control in such countries pose a higher risk.
A supplier’s ability to maintain a reliable and uninterrupted supply chain is also critical. A supplier may be considered high-risk if it is deemed vulnerable in delivering essential telecom components or ensuring consistent service. Corporate governance is another important aspect. Suppliers with opaque ownership structures or unclear separation from state influence are more likely to be classified as high-risk due to the increased potential for external control or lack of transparency.
A supplier’s cybersecurity practices also play a significant role. If the quality of the supplier’s products and its ability to implement security measures across operations are considered inadequate, this may raise concerns. In some cases, country-specific factors, such as intelligence assessments from national security agencies or evidence of offensive cyber capabilities, might heighten the risk associated with a particular supplier.
Furthermore, suppliers linked to criminal activities or intelligence-gathering operations undermining the EU’s security interests may also be considered high-risk.
To summarize what may make a telecom supplier a high-risk supplier:
Of non-EU origin.
Strong governmental ties.
The country of origin lacks democratic safeguards.
The country of origin lacks security protection or data protection agreements with the EU.
Associated supply chain risks of interruption.
Opaque ownership structure.
Unclear separation from state influence.
Ability to independently implement security measures shielding infrastructure from interference (e.g., sabotage, espionage, …).
These criteria are applied to ensure that telecom operators, and eventually any business with critical infrastructure, become independent of a single supplier, especially those that pose a higher risk to the security and stability of critical infrastructure.
Figure 8 above summarizes the current European legislative framework addressing high-risk suppliers in critical infrastructure, with an initial focus on 5G infrastructure and networks.
Regarding 5G infrastructure, the EU report reiterates the urgency for EU Member States to immediately implement restrictions on high-risk suppliers. The EU policy highlights the risks of state interference and cybersecurity vulnerabilities posed by the close ties between Chinese companies like Huawei and ZTE and the Chinese government. Following groundwork dating back to the 2008s EU Directive on Critical Infrastructure Protection (EPCIP), The EU’s Digital Single Market Strategy (2015), the (first) Network and Information Security (NIS) directive (2016), and early European concern about 5G societal impact and exposure to cybersecurity (2015 – 2017), the EU toolbox published in January 2020 is designed to address these risks by urging Member States to adopt a coordinated approach. As of 2023, a second EU report was published on the member state’s progress in implementing the EU Toolbox for 5G Cybersecurity. While many Member States have established legal frameworks that give national authorities the power to assess supplier risks, only 10 have fully imposed restrictions on high-risk suppliers in their 5G networks. The report criticizes the slow pace of action in some countries, which increases the EU’s collective exposure to security threats.
Germany, having one of the largest, in absolute numbers, Chinese RAN deployments in Western Europe, has been singled out for its apparent reluctance to address the high-risk supplier challenge in the last couple of years (see also notes in “Further Readings” at the back of this blog). Germany introduced its regulation on Chinese high-risk suppliers in July 2024 with a combination of their Telekommunikationsgesetz (TKG) and IT-Sicherheitsgesetz 2.0. The German government announced that starting in 2026, it will ban critical components from Huawei and ZTE in its 5G networks due to national security concerns. This decision aligns Germany with other European countries working to limit reliance on high-risk suppliers. Germany has been slower in implementing such measures than others in the EU, but the regulation marks a significant step towards strengthening its telecom infrastructure security. Light Reading has estimated that a German Huawei ban would cost €2.5B and take years for German telcos. This estimate seems very optimistic and certainly would require very substantial discounts from the supplier that would be chosen to replace, for example, their Huawei installations with, e.g., for Telekom Deutschland that would be ca. 50+% of their ca. 38+ thousand sites, and it is difficult for me to believe that that kind of economy would apply to all telcos in Western Europe with high-risk suppliers. I also believe it ignores de-commissioning costs and changes to the backend O&M systems. I expect telco operators will try to push the timeline for replacement until most of their high-risk supplier infrastructure is written off and ripe for modernization, which for Germany would most likely happen after 2026. One way or another, we should expect an increase in mobile Capex spending towards the end of the decade as the German operators are swapping out their Chinese RAN suppliers (which may only be a small part of their Capital spend if the ban is extended beyond 5G).
The European Commission recommends that restrictions cover critical and highly sensitive assets, such as the Radio Access Network (RAN) and core network functions, and urges member states to define transition periods to phase out existing equipment from high-risk suppliers. The transition periods, however, must be short enough to avoid prolonging dependency on these suppliers. Notably, the report calls for an immediate halt to installing new equipment from high-risk vendors, ensuring that ongoing deployment does not undermine EU security.
When it comes to fixed broadband services, the report extends its concerns beyond 5G. It stresses that many Member States are also taking steps to ensure that the fixed network infrastructure is not reliant on high-risk suppliers. Fourteen (14) member states have either implemented or plan to restrict Chinese-origin equipment in their fixed networks. Furthermore, nine (9) countries have adopted technology-neutral legislation, meaning the restrictions apply across all types of networks, not just 5G. This implies that Chinese-origin infrastructure, including transport network components, will eventually face the same scrutiny and restrictions as 5G networks. While the report does not explicitly call for a total ban on all Chinese-origin equipment, it stresses the need for detailed assessments of supplier risks and restrictions where necessary based on these assessments.
While the EU’s “5G Security Toolbox” focuses on 5G networks, Denmark’s approach, the “Danish Investment Screening Act,” which took effect on the 1st of July 2021, goes much further by addressing the security of fixed broadband, 4G, and transport networks. This broad regulatory focus helps Denmark ensure the security of its entire communications ecosystem, recognizing that vulnerabilities in older or supporting networks could still pose serious risks. A clear example of Denmark’s comprehensive approach to telecommunications security beyond 5G is when the Danish Center for Cybersikkerhed (CFCS) required TDC Net to remove Chinese DWDM equipment from its optical transport network. TDC Net claimed that the consequence of the CFCS requirement would result in substantial costs to TDC Net that they had not considered in their budgets. CFCS has regulatory and legal authority within Denmark, particularly in relation to national cybersecurity. CFCS is part of the Danish Defense Intelligence Service, which places it under the Ministry of Defense. Denmark’s regulatory framework is not only one of the sharpest implementations of the EU’s 5G Toolkit but also one of the most extensive in protecting its national telecom infrastructure across multiple layers and generations of technology. The Danish approach could be a strong candidate to serve as a blueprint for expanded EU regulation beyond 5G high-risk suppliers and thus become applicable to fixed broadband and transport networks, resulting in substantial additional Capex towards the end of the decade.
While not singled out as a unique risk category, customer premises equipment (CPE) from high-risk suppliers is mentioned in the context of broader network security measures. Some Member States have indicated plans to ensure that CPE is subject to strict procurement standards, potentially using EU-wide certification schemes to vet the security of such devices. CPE may be included in future security measures if it presents a significant risk to the network. Many CPEs have been integrated with the optical network terminal, or ONT, which is architecturally a part of the fixed broadband infrastructure, serving as a demarcation point between the fiber optic network and the customer’s internal network. Thus, ONT is highly likely to be considered and included in any high-risk supplier limitations that may come soon. Any CPE replacement program would likely be associated on its own with considerable Capex and cost for operators and their customers in general. The CPE quantum for the European Union (including the UK, cheeky, I know) is between 200 and 250 million CPEs, including various types of CPE devices, such as routers, modems, ONTs, and other network equipment deployed for residential and commercial users. It is estimated that 30% to 40% of these CPEs may be linked to high-risk Chinese suppliers. The financial impact of a systematic CPE replacement program in the EU (including the UK) could be between 5 to 8 billion euros in capital expenses, ignoring the huge operational costs of executing such a replacement program.
The Data Growth Slow Down – An Opportunities for Lower Capex?
How do we identify whether a growth dynamics, such as data growth, is exponential or self-limiting?
Exponential growth dynamics have the same (percentage) growth rate indefinitely. Self-limiting growth dynamics, or s-curve behavior, will have a declining growth rate. Natural systems are generally self-limiting, although they might exhibit exponential growth over a short term, typically in the initial growth phase. So, if you are in doubt (which you should not be), calculate the growth rate of your growth dynamics from the beginning until now. If that growth rate is constant (over several time intervals), your dynamics are exponential in nature (at least over the period you looked at); if not … well, your growth process is most likely self-limiting.
Telco Capex increases, and Telco Capex decreases. Capex is, in nature, cyclic, although increasing over time. Most European markets will have access to 550 to 650 MHz downlink spectrum depending on SDL deployment levels below 4 GHz. Assuming 4 (1) Mbps per DL (UL) MHz per sector effective spectral efficiency, 10 traffic hours per day, and ca. 350 to 400 thousand mobile sites (3 sectors each) across Western Europe, the carrying mobile capacity in Bytes is in the order of 140 Exa Bytes (EB) per Month (note: if I had chosen 2 and 0.5 Mbps per MHz per sector, carrying capacity would be ca. 70 EB/Month). It is clear that this carrying capacity limit will continue to increase with software releases, innovation, advanced antenna deployment with higher order MiMo, and migration from older radio access technologies to the newest (increasing the effective spectral efficiency).
According to Ericsson Mobility Visualizer, Western Europe saw a mobile data demand per month of 11 EB in 2023 (see Figure below). The demand for mobile data in 2023 was almost 10 times lower than the (conservatively) estimated carrying capacity of the underlying mobile networks.
Figure 9 illustrates the actual demanded data volume in EB per month. I have often observed that when planners estimate their budgetary demand for capacity expansions, they use the current YoY growth rate and apply it to the future (assuming their growth dynamics are geometrical). I call this the “Naive Expectations” assumption (fallacy) that obviously leads to the overprovision of network capacity and less efficient use of Capex, as opposed to the “Informed Expectations” approach based on the more realistic S-Curve dynamic growth dynamics. I have rarely seen the “Naive Expectations” fallacy challenged by CFOs or non-technical leadership responsible for the Telco budgets and economic health. Although not a transparent approach, it is a “great” way to add a “bit” of Capex cushion for other Capex uncertainties.
It should be noted that the Ericsson data treats traffic generated by fixed wireless access (FWA) separately (which, by the way, makes sense). Thus, the 11 EB for 2023 does not include FWA traffic. Ericsson only has a global forecast for FWA traffic starting from 2023 (note: it is not clear whether 2023 is actual FWA traffic or estimated). To get an impression of the long-term impact of FWA traffic, we can apply the same S-curve approach as the one used for mobile data traffic above, according to what I call the “Informed expectations” approach. Even with the FWA traffic, it is difficult to see a situation that, on average (at least), would pose any challenge to existing mobile networks. Particularly, the carrying capacity can easily be increased by deploying more advanced antennas (e.g., higher order MiMo), and, in general, it is expected to improve with each new software release forthcoming.
Figure 10 above uses Ericsson’s Mobile Visualizer data for Western Europe’s mobile and fixed wireless access (FWA) traffic. It gives us an idea of the total traffic expectations if the current usage dynamics continue. Ericsson only provides a global FWA forecast from 2023 to 2029. I have assumed WEU takes its proportional mobile share of the FWA traffic. Note: For the period up to and including 2023, it seems a bit rich in its FWA expectations, imo.
So, by all means, the latest and greatest mobile networks are, without much doubt, in most places, over-dimensioned from the perspective of their carrying bytes potential, the volumetric capacity, and what is demanded in terms of data volume. They also appear to remain so for a very long time unless the current demand dynamics fundamentally change (which is, of course, always a possibility, as we have seen historically).
However, that our customers get their volumetric demand satisfied is generally a reflection of the quality in terms of bits per second (a much more fundamental unit than volume) satisfied. Thus, the throughput, or speed, should be good enough for the customer to unhindered enjoy their consumption, which, as a consequence, generates the Bytes that most Telco executives have told themselves they understand and like to base their pricing on (and I would argue judging by my experience outside Europe more often than not maybe really don’t get). It is not uncommon that operators with complex volumetric pricing become more obsessed with data volume rather than optimum quality (that might, in fact, generate even more volume). The figure below is a snapshot from August 2024 of the median speeds customers enjoy in mobile as well as fixed broadband networks in Western Europe. In most cases in Europe, customers today enjoy substantially faster fixed-broadband services than they would get in mobile networks. One should expect that this would change how Telcos (at least integrated Telcos) would design and plan their mobile networks and, consequently, maybe dramatically reduce the amount of Mobile Capex we spend. There is little evidence that this is happening yet. However, I do anticipate, most likely naively, that the Telco industry would revise how mobile networks are architected, designed, and built with 6G.
Figure 11 shows that apart from one Western European country (Greece, also a fixed broadband laggard), all other markets have superior fixed broadband downlink speeds compared to what mobile networks can deliver. Note that the speed measurement data is based on the median statistic. Source:Speedtest Global Index, August 2024.
A Crisis of Too Much of a “Good” Thing?
Analysys Mason recently (July 2024) published a report titled “A Crisis of Overproduction in Bandwidth Means that Telecoms Capex Will Inevitably Fall.” The report explores the evolving dynamics of capital expenditure (Capex) in the telecom industry, highlighting that the industry is facing a turning point. The report argues that the telecom sector has reached a phase of bandwidth overproduction, where the infrastructure built to deliver data has far exceeded demand, leading to a natural decline in Capex over the coming years.
According to the Analysys Mason report, global Capex in the telecom sector has already peaked, with two significant investment surges behind it: the rollout of 5G networks in mobile infrastructure and substantial investments in fiber-to-the-premises (FTTP) networks. Both of these infrastructure developments were seen as essential for future-proofing networks, but now that the peaks in these investments have passed, Capex is expected to fall. The report predicts that by 2030, the Capex intensity (the proportion of revenue spent on capital investments) will drop from around 20% to 12%. This reduction is due to the shift from building new infrastructure to optimizing and maintaining existing networks.
The main messages that I take away from the Analysys Mason report are the following:
Overproduction of bandwidth: Telecom operators have invested heavily in building their networks. However, demand for data and bandwidth is no longer growing at the exponential rates seen in previous years.
Shifting Capex Trends: The telecom industry is experiencing two peaks: one in mobile spending due to the initial 5G coverage rollout and another in fixed broadband due to fiber deployments. Now that these peaks have passed, Capex is expected to decline.
Impact of lower data growth: The stagnation in mobile and fixed data demand, combined with the overproduction of mobile and fixed bandwidth, makes further large-scale investment in network expansion unnecessary.
My take on Analysys Mason’s conclusions is that with the cyclic nature of Telco investments, it is natural to expect that Capex will go up and down. That Capex will cycle between 20% (peak deployment phase) and 12% (maintenance phase) seems very agreeable. However, I would expect that the maintenance level would continue to increase as time goes by unless we fundamentally change how we approach mobile investments.
That network capacity is built up at the beginning of a new technology cycle (e.g., 5G NR, GPON, XGPON, XSGPON-based FTTH), it is also not surprising that the amount of available capacity will appear substantial. I would not call it a bandwidth overproduction crisis (although I agree that the overhead of provisioned carrying capacity compared to demand expectations seems historically high); it manifests the technologies we have developed and deployed today. For 5G NR real-world conditions, users could see peak DL speeds ranging from 200 Mbps to 1 Gbps with median 5G DL speeds of 100+ Mbps. The lower end of this range applies in areas with fewer available resources (e.g., less spectrum, fewer MIMO streams). In comparison, the higher end reflects better conditions, such as when a user is close to the cell tower with optimal signal conditions. The quality of fiber-connected households at current GPON and XGPON technology would be sustainable at 1 to 10 Gbps downstream to the in-home ONT/CPE. However, the in-home quality experienced over WiFi would depend a lot on how the WiFi network has been deployed and how many concurrent users there are at any given time. As backhaul and backbone transmission solutions to mobile and fixed access will be modern and fiber-based, there is no reason to believe that user demand should be limited in any way (anytime soon), given a well-optimized, modern fiber-optic network should be able to reach up to 100 Tbps (e.g., 10 EB per month with 10 traffic hours per day).
Germany, the UK, Belgium, and a few smaller Western countries will continue their fiber deployment for some years to bring their fiber coverage up to the level of countries such as France, Spain, Portugal, and the Netherlands. It is difficult to believe that these countries would not continue to invest substantial money to raise their fiber coverage from their current low levels. Countries with less than 60% fiber-to-the-home coverage have a share of 50+ % of the overall Western European Capex level.
The fact that the Telco industry would eventually experience lower growth rates should not surprise anyone. That has been in the cards since growth began. The figure below takes actual mobile data from Ericsson’s Mobile Visualizer. It applies a simple S-curve growth model dynamics to those data that actually do a very good job of accounting for the behavior. A geometrical growth model (or exponential growth dynamics), while possibly accounting for the early stages of technology adaptation and the resulting data growth, is not a reasonable model to apply here and is not supported by the actual data.
Figure 12 provides the actual Exa Bytes (EB) monthly with a fitted S-Curve extrapolated beyond 2023. The S-Curve is described by the Data Demand Limit (Ls), Growth Rate (k), and the Inflection Year (T0), where growth transitions from acceleration to deceleration. Source:Ericsson Mobile Visualizer resource.
The growth dynamic, applied to the data we extract from the markets shown in the above Figure, indicates that in Western Europe and the CEE (Central Eastern Europe), the inflection point should be expected around 2025. This is the year when the growth rates begin to decline. In Western Europe (and CEE), we would expect the growth rate to become less than 10% by 2030, assuming that no fundamental changes to the growth dynamic occur. The inflection point for the North American markets (i.e., The USA and Canada) is around 2033; this is expected to happen a bit earlier (2030) for Asia. Based on the current growth dynamics, North America will experience growth rates below 10% by 2036. For Asia, this event is expected to take place around 2033. How could FWA traffic growth change these results? The overall behavior would not change. The inflection point may happen later, thus the onset of slower growth rates, and the time when we would expect a growth rate lower than 10% would be a couple of years after the inflection year.
Let us just for fun (usually the best reason) construct a counterfactual situation. Let us assume that data growth continues to follow geometric (exponential) growth indefinitely without reaching a saturation point or encountering any constraints (e.g., resource limits, user behavior limitations). The premise is that user demand for mobile and fixed-line data will continue to grow at a constant, accelerating rate. For mobile data growth, we use the 27% YoY growth of 2023 and use this growth rate for our geometrical growth model. Thus, every ca. 3 years, the demand would double.
If telecom data usage continued to grow geometrically, the implications would (obviously) be profound:
Exponential network demand: Operators would face exponentially increasing demand on their networks, requiring constant and massive investments in capacity to handle growing traffic. Once we reach the limits of the carrying capacity of the network, we have three years (with a CAGR of 27%) until demand has doubled. Obviously, any spectrum position would quickly become insufficient, resulting in massive investments in new infrastructure (sites in mobile and more fiber) would be needed. Capacity would become the growth limiting factor.
Costs: The capital expenditures (Capex) required to keep pace with geometric growth would skyrocket. Operators must continually upgrade or replace network equipment, expand physical infrastructure, and acquire additional spectrum to support the growing data loads. This would lead to unsustainable business models unless prices for services rose dramatically, making such growth scenarios unaffordable for consumers but long before that for the operators themselves.
Environmental and Physical Limits: The physical infrastructure necessary to support geometric growth (cell towers, fiber optic cables, data centers) would also have environmental consequences, such as increased energy consumption and carbon emissions. Additionally, telecom providers would face the law of diminishing returns as building out and maintaining these networks becomes less economically feasible over time.
Consumer Experience: The geometric growth model assumes that user behavior will continue to change dramatically. Consumers would need to find new ways to utilize vast amounts of bandwidth beyond streaming and current data-heavy applications. Continuous innovation in data-hungry applications would be necessary to keep up with the increased data usage.
The counterfactual argument shows that geometric growth, while useful for the early stages of data expansion, becomes unrealistic as it leads to unsustainable economic, physical, and environmental demands. The observed S-curve growth is more appropriate for describing mobile data demand because it accounts for saturation, the limits of user behavior, and the constraints of telecom infrastructure investment.
Back to Analysys Mason’s expected, and quite reasonable, consequence of the (progressively) lower data growth: large-scale investment would become unnecessary.
While the assertion is reasonable, as said, mobile obsolescence hits the industry every 5 to 7 years, regardless of whether there is a new radio access technology (RAT) to take over. I don’t think this will change, or maybe the Industry will spend much more on software annually than previously and less on hardware modernization during obsolescence transformations. Though I suspect that the software would impose increasingly harder requirements on the underlying hardware (whether on-prem or in the cloud), modernization investments into the hardware part would continue to be substantial. This is not even considering the euphoria that may come around the next generation RAT (e.g., 6G).
The fixed broadband fiber infrastructure’s economical and useful life is much longer than that of the mobile infrastructure. The optical transmission equipment is likewise used for access, aggregation, and backbone (although not as long as the optical fiber itself). Additionally, fiber-based fixed broadband networks are operationally (much) more efficient than their mobile counterparts, alluding to the need to re-architect and redesign how they are being built as they are no longer needed inside customer dwellings. Overall, it is not unreasonable to expect that fixed broadband modernization investments will occur less frequently than for mobile networks.
Is Enough Customer Bandwidth a Thing?
Is there an optimum level of bandwidth in bits per second at which a customer is fully (optimized) served? Beyond that, whether the network could provide far more speed or quality does not matter.
For example. for most mobile devices, phones, and tablets, much more than 10 Mbps for streaming would not make much of a viewing difference for the typical customer. Given the assumptions about eyesight and typical viewing distances, more than 90% of people would not notice an improvement in viewing experience on a mobile phone or tablet beyond 1080p resolution. Increasing the resolution beyond that point—such as to 1440p (Quad HD) or 4K would likely not provide a noticeably better experience for most users, as their visual acuity limits their ability to discern finer details on small screens. This means the focus for improving mobile and tablet displays shifts from resolution to other factors like color accuracy, brightness, and contrast rather than chasing higher pixel counts. An optimization strategy that should not necessarily result in higher bandwidth requirements, although moving to higher color depth or more brightness / dynamic range (e.g., HDR vs SDR) would lead to a moderate increase in the required data ranges.
A throughput between 50 and 100 Mbps for fixed broadband TV streaming currently provides an optimum viewing experience. Of course, a fixed broadband household may have many concurrent bandwidth demands that would justify a 1 Gbps fiber to the home or maybe even 10 Gbps downstream to serve the whole household at an optimum experience at any time.
Figure 13 provides the data rate ranges for a streaming format, device type, and typical screen size. The data rate required for streaming video content is determined by various factors, including video resolution, frame rate, compression, and screen size. The data rate calculation (in Mbps) for different streaming formats follows a process that involves estimating the amount of data required to encode each frame and multiplying by the frame rate and compression efficiency. The methodology can be found in many places. See also my blog “5G Economics – An Introduction (Chapter 1)” from Dec. 2016.
Let’s move into high-end and fully immersive virtual reality experiences. The user bandwidth requirement may exceed 100 Mbps and possibly even require a Gbps sustainable bandwidth delivered to the user device to provide an optimum experience. However, jitter and latency performance may not make such full immersion or high-end VR experiences fully optimal over mobile or fixed networks with long distances to the supporting (edge) data centers and cloud servers where the related application may reside. In my opinion, this kind of ultra-high-end specialized service might be better run exclusively on location.
Size Matter.
I once had a CFO who was adamant that an organization’s size on its own would drive a certain amount of Capex. I would, at times, argue that an organization’s size should depend on the number of activities required to support customers (or, more generally, the number of revenue-generating units (RGUs), your given company has or expects to have) and the revenue those generate. In my logic, at the time, the larger a country in terms of surface area, population, and households, the more capex-related activities would be required, thus also resulting in the need for a bigger organization. If you have more RGU, it might also not be too surprising that the organization would be bigger.
Since then, I have scratched my head many times when I look at country characteristics, the RGUs, and Revenues, asking how that can justify a given size of Telco organizations, knowing that there are other Telcos out there that spend the same or more Capex with a substantially smaller organization (also after considering the difference in sourcing strategies). I have never been with an organization that irrespective of its size did not feel pressured work-wise and believed it was too lightly staffed to operate, irrespective of the Capex and activities under management.
Figure 14 illustrates the correlation between the Capex and the number of FTEs in a Telco organization. It should be noted that the upper right point results in a very good correlation of 0.75. Without this point, the correlation would be around 0.25. Note that sourcing does have a minor effect on the correlation.
The above figure illustrates a strong correlation between Capex and the number of people in a Telco organization. However, the correlation would be weaker without the upper right data point. In the data shown here, you will find no correlation between FTEs and a country’s size, such as population or surface area, which is also the case for Capex. There is a weak correlation between FTEs and RGU and a stronger correlation with Revenues. Capex, in general, is very strongly correlated with Revenues. The best multi-linear regression model, chosen by p-value, is a model where Capex relates to FTEs and RGUs. For a Telco with 1000 employees and 1 million RGUs, approximately 50% of the Capex could be explained by the number of FTEs. Of course, in the analysis above, we must remember that correlation does not imply causation. You will have telcos that, in most Capex driver aspects, should be reasonably similar in their investment profiles over time, except the telco with the largest organization will consistently invest more in Capex. While I think this is, in particular, an incumbent vs challenger issue, it is a much broader issue in our industry.
Having spent most of my 20+ year career in Telecom being involved in Capex planning and budgeting, it is clear that the size of an organization plays a role in the size of a Capex budget. Intuitively, it should not be too surprising. Suppose the Capex is lower than the capacity of your organization. In that case, you may have to lay off people with the risk you might be short of resources in the future as you may cycle through modernization or a new technology introduction. On the other hand, if the Capex needs are substantially larger than the organization can cope with, including any sourcing agreements in place, it may not make too much sense to ask for more than what can be managed with the resources available (apart from it being sub-optimal for cash flow optimization).
Telco companies that have fixed and mobile broadband infrastructure in their portfolio with organizations that are poorly optimized and with strict demarcation lines between people working on fixed broadband and mobile broadband will, in general, have much worse Capex efficiencies compared to fully fixed-mobile converged organizations (not to mention suffering from poorer operational efficiencies and work practices compared to integrated organizations). Here, the size of, for example, a mobile organization will drive behavior that rather would spend above and beyond Capex in their Radio Access Network infrastructure than use more clever and proven solutions (e.g., Opanga’s RAIN) to optimize quality and capacity needs across their mobile networks.
In general, the resistance to utilize smarter solutions and clever ideas that may save Capex (and/or Opex) is manifesting in a many-fold of behaviors that I have observed over my 25+ year career (and some I might even have adapted on occasion … but shhhh;-).
Budget heuristics:
𝗦𝗶𝘇𝗲 𝗱𝗼𝗲𝘀𝗻𝘁 𝗺𝗮𝘁𝘁𝗲𝗿 𝗽𝗮𝗿𝗮𝗱𝗶𝗴𝗺 Irrespective of size, my organization will always be busy and understaffed.
𝗧𝗵𝗲 𝗚𝗼𝗹𝗱𝗶𝗹𝗼𝗰𝗸𝘀 𝗙𝗮𝗹𝗹𝗮𝗰𝘆 My organization’s size and structure will determine its optimum Capex spending profile, allowing it to stay busy (and understaffed).
𝗧𝗮𝗻𝗴𝗶𝗯𝗹𝗲 𝗕𝗶𝗮𝘀 A hardware (infrastructure-based) solution is better and more visible than a software solution. I feel more comfortable with my organization being busy with hardware.
𝗧𝗵𝗲 𝗦𝘂𝗻𝗸 𝗖𝗼𝘀𝘁 𝗙𝗮𝗹𝗹𝗮𝗰𝘆 I don’t trust (allegedly) clever software solutions that may lower or postpone my Capex needs and, by that, reduce the need for people in my organization.
𝗕𝘂𝗱𝗴𝗲𝘁 𝗠𝗮𝘅𝗶𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻 𝗧𝗲𝗻𝗱𝗲𝗻𝗰𝘆 My organization’s importance and my self-importance are measured by how much Capex I have in my budget. I will resist giving part of my budget away to others.
𝗦𝘁𝗮𝘁𝘂𝘀 𝗤𝘂𝗼 𝗕𝗶𝗮𝘀 I will resist innovation that may reduce my Capex budget, even if it may also help reduce my Opex.
𝗝𝗼𝗯 𝗣𝗿𝗼𝘁𝗲𝗰𝘁𝗶𝗼𝗻𝗶𝘀𝗺 I resist innovation that may result in a more effective organization, i.e., fewer FTEs.
𝗖𝗮𝗽𝗮𝗰𝗶𝘁𝘆 𝗖𝗼𝗺𝗳𝗼𝗿𝘁 𝗦𝘆𝗻𝗱𝗿𝗼𝗺𝗲: The more physical capacity I build into my network, the more we can relax. Our goal is a “Zero Worry Network.”
𝗧𝗵𝗲 𝗙𝗲𝗮𝗿 𝗙𝗮𝗰𝘁𝗼𝗿: The leadership is “easy to scare” when arguing for more capacity Capex opposed to the “if-not”-consequences. (e.g., losing best network awards, poorer customer experience, …).
𝗧𝗵𝗲 𝗕𝘂𝗱𝗴𝗲𝘁 𝗜𝗻𝗲𝗿𝘁𝗶𝗮 Return on Investment (ROI) prioritization is rarely considered (rigorously), particularly after a budget has been released.
𝗔 𝘄𝗮𝗿𝗻𝗶𝗻𝗴: although each is observable in the live, the reader should be aware that there is also a fair amount of deliberate ironic provocation in the above heuristics.
We should never underestimate that within companies, two things make you important (including self-important and self-worthy) … It is: (1) The size of your organization and (2) the amount of money, your budget size, you have for your organization to be busy with.
Any innovation that may lower an organization’s size and budget will be met with resistance from that organization.
The Balancing Act of Capex to Opex Transformations.
Telco cost structures and Capex have evolved significantly due to accounting changes, valuation strategies, technological advancements, and economic pressures. While shifts like IFRS (International Financial Reporting Standards), issued by the International Accounting Standards Board (IASB), have altered how costs are reported and managed, changes in business strategies, such as cell site spin-offs, cloud migrations, and the transition to software-defined networks, have reshaped Capex allocations somewhat. At the same time, economic crises and competitive pressures have influenced Telcos to continually reassess their capital investments, balancing the need to optimize value, innovation, and growth with financial diligence.
One of the most significant drivers of change has been the shift in accounting standards, particularly with the introduction of IFRS16, which replaced the older GAAP-based approaches. Under IFRS16, nearly all leases are now recognized on the balance sheet as right-of-use assets and corresponding liabilities. This change has particularly impacted Telcos, which often engage in long-term leases for cell sites, network infrastructure, and equipment. Previously, under GAAP (Generally Accepted Accounting Principles), many leases were treated as operating leases, keeping them off the balance sheet, and their associated costs were considered operational expenditures (Opex). Now, under IFRS16, these leases are capitalized, leading to an increase in reported Capex as assets and liabilities grow to reflect the leased infrastructure. This shift has redefined how Telcos manage and report their Capex, as what was previously categorized as leasing costs now appears as capital investments, altering key financial metrics like EBITDA and debt ratios that would appear stronger post-IFRS16.
Simultaneously, valuation strategies and financial priorities have driven significant shifts in Telco Capex. Telecom companies have increasingly focused on enhancing metrics such as EBITDA and capital efficiency, leading them to adopt strategies to reduce heavy capital investments. One such strategy is the cell site spin-off, where Telcos sell off their tower and infrastructure assets to specialized independent companies or create separate entities that manage these assets. These spin-offs have allowed Telcos to reduce the Capex tied to maintaining physical assets, replacing it with leasing arrangements, which shift costs towards operational expenses. As a result, Capex related to infrastructure declines, freeing up resources for investments in other areas such as technology upgrades, customer services, and digital transformation. The spun-off infrastructures often result in significant cash inflows from sales. The telcos can then use this cash to improve their balance sheets by reducing debt, reinvesting in new technologies, or distributing higher dividends to shareholders. However, this shift may also reduce control over critical network infrastructure and create long-term lease obligations, resulting in substantial operational expenses as telcos will have to pay the rental costs on the spun-off infrastructure, increasing Opex pressure. I regularly see analysts using the tower spin-off as an argument for why Capex requirements of telcos are no longer wholly trustworthy and, in particular, in comparison with the past capital spending as the passive part of the cell site built used to be a substantial share mobile site Capex of up to 50% to 60% for a standard site built and beyond that for special sites. I believe that as not many new cell sites are being built any longer, and certainly not as many as in the 90s and 2000s, this effect is very minor on the overall Capex. Most new sites are built at a maintenance level, covering new residential or white spot areas.
When considering mobile network evolution and the impact of higher frequencies, it is important not to default to the assumption that more cell sites will always be necessary. If all things are equal, the coverage cell range of a high carrier frequency would be shorter (often much shorter) than the coverage range at a lower frequency. However, all things are not equal. This misconception arises from a classical coverage approach, where the frequency spectrum is radiated evenly across the entire cell area. However, modern cellular networks employ advanced technologies such as beamforming, which allows for more precise and efficient distribution of radio energy. Beamforming concentrates signal power in specific directions rather than thinly spreading it across a wide area, effectively increasing reach and signal quality without additional sites. Furthermore, the support for asymmetric downlink (higher) and uplink (lower) carrier frequencies allows for high-quality service downlink and uplink in situations where the uplink might be challenged at higher frequencies.
Moreover, many mobile networks today have already been densified to accommodate coverage needs and capacity demands. This densification often occurred when spectrum resources were scarce, and the solution was to add more sites for improved performance rather than simply increasing coverage. As newer frequency bands become available, networks can leverage beamforming and existing densification efforts to meet coverage and capacity requirements without necessarily expanding the number of cell sites. Thus, the focus should be optimizing the deployment of advanced technologies like beamforming and Massive MIMO rather than increasing the site count by default. In many cases, densified networks are already equipped to handle higher frequencies, making additional sites unnecessary for coverage alone.
The migration to public cloud solutions from, for example, Amazon’s AWS or Microsoft Azure is another factor influencing the Capex of Telcos. Historically, telecom companies relied on significant upfront Capex to build and maintain their own data centers or switching locations (as they were once called, as these were occupied mainly by the big legacy telecom proprietary telco switching infrastructure), network operations centers, and IT (monolithic) infrastructure. However, with the rise of cloud computing, Telcos are increasingly migrating to cloud-based solutions, reducing the need for large-scale physical infrastructure investments. This shift from hardware to cloud services changes the composition of Capex as the need for extensive data center investments declines, and more flexible, subscription-based cloud services are adopted. Although Capex for physical infrastructure decreases, there is a shift towards Opex as Telcos pay for cloud services on a usage basis.
Further, the transition to software-defined networks (SDNs) and software-centric telecom solutions has transformed the nature of Telco Capex. In the past, Telcos heavily depended on proprietary hardware for network management, which required substantial Capex to purchase and maintain physical equipment. However, with the advancement of virtualization and SDNs, telcos have shifted away from hardware-intensive solutions to more software-driven architectures. This transition reduces the need for continuous Capex on physical assets like routers, switches, and servers and increases investment in software development, licensing, and cloud-based platforms. The software-centric model allows, in theory, Telcos to innovate faster and reduce long-term infrastructure costs.
The Role of Capex in Financial Statements.
Capital expenditures play a critical role in shaping a telecommunications company’s financial health, influencing its income statement, balance sheet, and cash flow statements in various ways. At the same time, Telcos establish financial guardrails to manage the impact of Capex spending on dividends, liquidity, and future cash needs.
In the income statement (see Figure 15 below), Capex does not appear directly as an expense when it is incurred. Instead, it is capitalized on the balance sheet and then expensed over time through depreciation (for tangible assets) or amortization (for intangible assets). This gradual recognition of the Capex expenditure leads to higher depreciation or amortization charges over future periods, reducing the company’s net income. While the immediate impact of Capex is not seen on the income statement, the long-term effects can improve revenue when investments enhance capacity and quality, as with technological upgrades like 5G infrastructure. However, these benefits are offset by the fact that depreciation lowers profitability in the short term (as the net profit is lowered). The last couple of radio access technology (RAT) generations have, in general, caused an increase in telcos’ operational expenses (i.e., Opex) as more cell sites are required, heavier site configurations are implemented (e.g., multi-band antennas, massive MiMo antennas), and energy consumption has increased in absolute terms. Despite every new generation having become relatively more energy efficient in terms of the kWh/GB, in absolute terms, this is not the case, and that matters for the income statement and the incurred operational expenses.
Figure 15 illustrates the typical income statement one may find in a telco’s annual report or official financial statements. The purpose here is to show where Capex may have an influence although Capex will not be directly stated in the Income Statement. Note: the numbers in the above financial statement are for illustration only representing a Telco with 35% EBITDA margin, 20% Capex to Revenue Ratio and a Tax rate of 22%.
On the balance sheet (see Figure 16 below), Capex increases the value of a company’s fixed assets, typically recorded as property, plant, and equipment (PP&E). As new assets are added, the company’s overall asset base grows. However, this is balanced by the accumulation of depreciation, which gradually reduces the book value of these assets over time. How Capex is financed also affects the company’s liabilities or equity. If debt is used to finance Capex, the company’s liabilities increase; if equity financing is used, shareholders’ equity increases. The Balance Sheet together with the Depreciation & Amortization (D&A), typically given in the income statement, can help us estimate the amount of Capex a Telco has spend. The capital expense, typically not directly reported in a companies financial statements, can be estimated by adding the changes between subsequent years of PP&E and Intangible Assets to the D&A.
Figure 16 illustrates the balance sheet one may find in a telco’s annual report or official financial statements. The purpose here is to show where Capex may have an influence. Knowing the Depreciation & Amortization (D&A) typically shown in the Income Statement, the change in PP&E and Intangible Assets (between two subsequent years) will provide an estimate of the Capex of the current year. Note: the numbers in the above financial statement are for illustration only representing a Telco with 35% EBITDA margin, 20% Capex to Revenue Ratio and a Tax rate of 22%.
In the cash flow statement, Capex appears as an outflow under the category of cash flows from investing activities, representing the company’s spending on long-term assets. In the short term, this creates a significant reduction in cash. However, well-planned Capex to enhance infrastructure or expand capacity can lead to higher operating cash flows in the future. If Capex is funded through debt or equity issuance, the inflow of funds will be reflected under cash flows from financing activities.
Figure 17 illustrates the Cash Flow Statements one may find in a telco’s annual report or official financial statements (might have a bit more details than what usually would be provided). We would typically get a 70+% impression of a Telco’s Capex level by looking at the “Net Cash Flow Used in Investing Activities”, unless we are offered Purchases of Tangible and Intangible Assets. Note: the numbers in the above financial statement are for illustration only representing a Telco with 35% EBITDA margin, 20% Capex to Revenue Ratio and a Tax rate of 22%.
To ensure Capex does not overly strain the company’s financial health or limit returns to shareholders, Telcos put in place financial guardrails. Regarding dividends, many companies set specific dividend payout ratios, ensuring that a portion of earnings or free cash flow is consistently returned to shareholders. This practice balances returning value to shareholders while retaining sufficient earnings to fund operations and investments. It is also not unusual that Telco’s commit a given dividend level to shareholders, that as a consequence may place a limit on Capex spending or result in Capex tasking within a given planning period, as management must balance cash outflows between shareholder returns and strategic investments. This may lead to prioritizing essential projects, delaying less critical investments, or seeking alternative financing to maintain both Capex and dividend commitments. Additionally, Telcos often use dividend coverage ratios to ensure they can sustain dividend payouts even during periods of heavy capital expenditure.
Some telcos have chosen not to commit dividends to shareholders in order to maximize Capex investments, aiming to reinvest profits into the business to drive long-term growth and create higher shareholder value. This strategy prioritizes network expansion, technological upgrades, and new market opportunities over immediate cash returns, allowing the company to maintain financial flexibility and pursue strategic objectives more aggressively. When a telco decides to start paying dividends, it may indicate that management believes there are fewer high-value investment opportunities that can deliver returns above the company’s cost of capital. The decision to pay dividends often reflects the view that shareholders may derive greater value from the cash than the company could generate by reinvesting it. Often it signals a shift to a higher degree of maturity (e.g., corporate or market wise) from having been a growth focused company (i.e., the Telco has past the inflection point of growth). An example of maturity, and maybe less about growth opportunities, is the case of T-Mobile USA which in 2024 announced that it would start to pay dividend for the first time in its history targeting a 10 percent annually per share (note: Deutsche Telekom AG gained ownership in 2001, the company was founded in 1994).
Liquidity management is another consideration. Companies monitor their liquidity through current or quick ratios to ensure they can meet short-term obligations without cutting dividends or pausing important Capex projects. To provide an additional safety net, Telcos often maintain cash reserves or access to credit lines to handle immediate financial needs without disrupting long-term investment plans.
Regarding debt management, Telcos must carefully balance using debt to finance Capex. Companies often track their debt-to-equity ratio to avoid over-leveraging, which can lead to higher interest expenses and reduced financial flexibility. Another common metric is net debt to EBITDA, which ensures that debt levels remain manageable concerning the company’s earnings. To avoid breaching agreements with lenders, Telcos often operate under covenants that limit the amount they can spend on Capex without negatively affecting their ability to service debt or pay dividends.
Telcos also plan long-term cash flow to ensure Capex investments align with future financial needs. Many companies establish a capital allocation framework that prioritizes projects with the highest returns, ensuring that investments in infrastructure or technology do not jeopardize future cash flow. Free cash flow (FCF) is a particularly important metric in this context, as it represents the amount of cash available after covering operating expenses and Capex. A positive FCF ensures the company can meet future cash needs while returning value to shareholders through dividends or share buybacks.
Capex budgeting and prioritization are also essential tools for managing large investments. Companies assess the expected return on investment (ROI) and the payback period for Capex projects, ensuring that capital is allocated efficiently. Projects with assumed high strategic value, such as 5G infrastructure upgrades, household fiber coverage, or strategic fiber overbuilt, are often prioritized for their potential to drive long-term revenue growth. Monitoring the Capex-to-sales ratio helps ensure that capital investments are aligned with revenue growth, preventing over-investment in infrastructure that may not yield sufficient returns.
CAPEX EXPECTATIONS 2024 to 2026.
Considering all of the 54 telcos, ignoring MasMovil and WindHellas that are in the process of being integrated, in the pool of New Street Research Quarterly review each with their individual as well as country “peculiarities” (e.g., state of 5G deployment, fiber-optical coverage, fiber uptake, merger-resulting integration Capex, general revenue trends, …), it is possible to get a directional idea of how Capex will develop for each individual telco as well as the overall trend. This is illustrated in the Figure below on a Western European level.
I expect that we will not see a Capex reduction in 2024, supported by how Capex in the third and fourth quarters usually behave compared to the first two quarters, and due to integration and transformation Capex that will carry from 2023 into 2024 and possibly with a tail-end in 2024. I expect most telcos will cut back on new mobile investments, even if some might start ripping out radio access infrastructure from Chinese suppliers. However, I also believe that telcos will try to delay replacement to 2026 to 2028, when the first round of 5G modernization activities would be expected (and even overdue for some countries).
While 5G networks have made significant advancements, the rollout of 5G SA remains limited. By the end of 2023, only five of 39 markets analyzed by GSMA have reached near-complete adoption of 5G SA networks. 17 markets had yet to launch 5G SA at all. One of the primary barriers is the high cost of investment required to build the necessary infrastructure. The expansion and densification of 5G networks, such as installing more base stations, are essential to support 5G SA. According to GSMA, many operators are facing financial hurdles, as returns in many markets have been flat, and any increase is mainly due to inflationary price corrections rather than incremental or new usage occurring. I suspect that telcos may also be more conservative (and even more realistic, maybe) in assessing the real economic potential of the features being enabled by migrating to 5G SA, e.g., advanced network slicing, ultra-low latency, and massive IoT capabilities in comparison with the capital investments and efforts that they would need to incur. I should point out that any core network investments supporting 5G SA would not be expected to have a visible impact on telcos Capex budgets as this would be expected to be less than 10% of the mobile capex.
Figure 18 shows the 2022 status of homes covered by fiber in 16 Western European countries, as well as the number of households remaining. It should be noted that a 100% coverage level may be unlikely, and this data does not consider fiber overbuilt (i.e., multiple companies covering the same households with their individual fiber deployments). Fiber overbuilt becomes increasingly likely as the coverage exceeds 80% (on a geographical regional/city basis). The percentages (yellow color) above the chart show the share of Total 2022 Western European Capex for the country, e.g., Germany’s share of the 2022 Capex was 18% and had ca. 19% of all German households covered with fiber. Source: based on Omdia & Point Topic’s “Broadband Coverage in Europe 2013-2022” (EU Commission Report).
In 2022, a bit more than 50% of all Western European households were covered by fiber (see Figure 18 above), which amounts to approximately 85 million households with fiber coverage. This also leaves approximately 80 million households without fiber reach. Almost 60% of households without fiber coverage are in Germany (38%) and the UK (21%). Both Germany and the UK contributed about 40% of the total Western European Capex spend in 2022.
Moreover, I expect there are still Western European markets where the Capex priority is increasing the fiber-optic household coverage. In 2022, there was a peak in new households covered by fiber in Western Europe (see Figure 15 below), with 13+ million households covered according to the European Commission’s report “Broadband Coverage in Europe 2013-2022“. Germany (a fiber laggard) and the UK, which account for more than 35% of the Western European Capex, are expected to continue to invest substantially in fiber coverage until the end of the decade. As Figure 19 below illustrates, there is still a substantial amount of Capex required to close the fixed broadband coverage gap some Western European countries have.
Figure 19 illustrates the number of households covered by fiber (homes passed) and the number of millions of new households covered in a year. The period from 2017 to 2022 is based on actuals. The period from 2023 to 2026 is forecasted for new households covered based on the last 5-year average deployment or the maximum speed over the last 5 years (Urban: e.g., DE, IT, NL, UK,…) with deceleration as coverage reaches 95% for urban areas and 80% for rural (note: may be optimistic for some countries). The fiber deployment model differentiates between Urban and Rural areas. Source: based on Omdia & Point Topic’s “Broadband Coverage in Europe 2013-2022” (EU Commission Report).
I should point out that I am not assuming that telcos would be required over the next couple of years to swap out Chinese suppliers outside the scope of the European Commission “The EU 5G Toolkit for Security” framework that mainly focuses on 5G mobile networks eventually including the radio access network. It should be kept in mind that there is a relatively big share of high-risk suppliers within the Western European (actually in most European Union member states) fixed broadband networks (e.g., core routers & switches, SBCs, OLT/ONTs, MSAPs) that if subjected to “5G Toolkit for Security”-like regulation, such as in effect in Denmark (i.e., “The Danish Investment Screening Act”), would result in substantial increase in telcos fixed capital spend. We may see that some Western European telcos will commence replacement programs as equipment becomes obsolete (or near obsolete), and I would expect that the fixed broadband Capex will remain relatively high for telcos in Western Europe even beyond 2026.
Thus, overall, I think it is not unrealistic to anticipate a decrease in Capex over the next 3 years. Contrary to some analysts’ expectations, I do not see the lower Capex level being persistent but rather what to expect due to the reasons given above in this blog.
Figure 20 illustrates the pace and financial requirements for fiber-to-the-premises (FTTP) deployment across the EU, emphasizing the significant challenges ahead. Germany needs the highest number of households passed per week and the largest investments at €32.9 billion to reach 80% household coverage by 2031. The total investment required to reach 80% household fiber coverage by 2031 is estimated at over €110 billion, with most of this funding allocated to urban areas. Despite progress, more than 57% of Western European households still lack fiber coverage as of 2022. Achieving this goal will require maintaining the current pace of deployment and overcoming historical performance limitations. Source: based on Omdia & Point Topic’s “Broadband Coverage in Europe 2013-2022” (EU Commission Report).
CAPEX EXPECTATIONS TOWARDS 2030.
Taking the above Capex forecasting approach, based on the individual 54 Western European telcos in the New Street Research Quarterly review, it is relatively straightforward, but not per se very accurate, to extend to 2030, as shown in the figure below.
It is worth mentioning that predicting Capex’s reliability over such a relatively long period of ten years is prone to a high degree of uncertainty and can actually only be done with relatively high reliability if very detailed information is available on each telco’s long-term, short-term and strategy as well as their economic outlook. In my experience from working with very detailed bottom-up Capex models covering a five and beyond-year horizon (which is not the approach I have used here simply for lack of information required for such an exercise not to be futile), it is already prone to a relatively high degree of uncertainty even with all the information, solid strategic outlook, and reasonable assumptions up front.
Figure 21 illustrates Western Europe’s projected capital expenditure (Capex) development from 2020 to 2030. The slight increase in Capex towards 2030 is primarily driven by the modernization of 5G radio access networks (RAN), which could potentially incorporate 6G capabilities and further deploy 5G Standalone (SA) networks. Additionally, there is a focus on swapping out high-risk suppliers in the mobile domain and completing heavy fiber household coverage in the remaining laggard countries. Suppose the European Commission’s 5G Security Toolkit should be extended to fixed broadband networks, focusing on excluding high-risk suppliers in the 5G mobile domain. In that case, this scenario has not been factored into the current model represented here. The percentages on the chart represent the overall Capex to Total Revenue ratio development over the period.
The capital expenditure trends in Western Europe from 2020 to 2030, with projections indicating a steady investment curve (remember that this is the aggregation of 54 Western European telcos Capex development over the period).
A noticeable rise in Capex towards 2030 can be attributed to several key factors, primarily the modernization of 5G Radio Access Networks (RAN). This modernization effort will likely include upgrades to the current 5G infrastructure and potential integration of 6G (or renamed 5G SA) capabilities as Europe prepares for the next generation of mobile technology, which I still believe is an unavoidable direction. Additionally, deploying or expanding 5G Standalone (SA) networks, which offer more advanced features such as network slicing and ultra-low latency, will further drive investments.
Another significant factor contributing to the increased Capex is the planned replacement of high-risk suppliers in the mobile domain. Countries across Western Europe are expected to phase out network equipment from suppliers deemed risky for national security, aligning with broader EU efforts to ensure a secure telecommunications infrastructure. I expect a very strong push from some member state regulators and the European Commission to finish the replacement by 2027/2028. I also expect impacted telcos (of a certain size) to push back and attempt to time a high-risk supplier swap out with their regular mobile infrastructure obsolescence program and introduction of 6G in their networks towards and after 2030.
Figure 22 shows the projections for 2023 and 2030 for the number of homes covered by fiber in Western European countries and the number of households remaining. It should be noted that a 100% coverage level may be unlikely, and this data does not consider fiber overbuilt (i.e., multiple companies covering the same households with their individual fiber deployments). Fiber overbuilt becomes increasingly likely as the coverage exceeds 80% (on a geographical regional/city basis). Source: based on Omdia & Point Topic’s “Broadband Coverage in Europe 2013-2022” (EU Commission Report).
Simultaneously, Western Europe is expected to complete the extensive rollout of fiber-to-the-home (FTTH) networks, as illustrated by Figure 20 above, particularly in countries lagging behind in fiber deployment, such as Germany, the UK, Belgium, Austria, and Greece. These EU member states will likely have finished covering the majority of households (80+%) with high-speed fiber by the end of the decade. On this topic, we should remember that telcos are using various fiber deployment models that minimize (and optimize) their capital investment levels. By 2030 I would expect that almost 80% of all Western European households will be covered with fiber and thus most consumers and businesses will have easy access to gigabit services to their homes by then (and for most countries long before 2030). Germany is still expected to be the Western European fiber laggard by 20230, with an increased share of 50+% of German households not being covered by fiber (note: in 2022, this was 38%). Most other countries will have reached and exceeded 80% fiber household coverage.
It is also important to note that my Capex model does not assume the extension of the European Commission’s 5G Security Toolkit, which focuses on excluding high-risk suppliers in the 5G domain to fixed broadband networks. If the legal framework were to be applied to the fixed broadband sector as well, an event that I see to be very likely, forcing the removal of high-risk suppliers from fiber broadband networks, Capex requirements would likely increase significantly beyond the projections represented in my assessment with the last years of the decade focused on high-risk supplier replacement in Western European Telcos fixed broadband transport and IP networks. While it is I don’t see a (medium-high) risk that all CPEs would be included in a high-risk supplier ban. However, I do believe that CPEs with the ONT integrated may be required to replace their installed CPE base. If a high-risk supplier ban were to include the ONT, there would be several implications.
Any CPEs that use components from the banned supplier would need to be replaced or retrofitted to ensure compliance. This would require swapping the integrated CPE/ONT units for separate CPE and ONT devices from approved suppliers, which could add to installation costs and increase deployment time. Service providers would also need to reassess their network equipment supply chain, ensuring that new ONTs and CPEs meet regulatory standards for security and compliance. Moreover, replacing equipment could potentially disrupt existing service, necessitating careful planning to manage the transition without major outages for customers. This situation would likely also require updates to the network configuration, as replacing an integrated CPE/ONT device could involve reconfiguring customer devices to work seamlessly with the new setup. I believe it is very likely that telcos eventually will offer fixed broadband service, including CPEs and home gateways, that are free of high-risk suppliers end-2-end (e.g., for B2B and public institutions, e.g., defense and other critically sensitive areas). This may extend to requirements that employees working in or with sensitive areas will need a certificate of high-risk supplier-free end-2-end fixed broadband connection to be allowed to work from home or receive any job-related information (this could extend to mobile devices as well). Again, substantial Capex (and maybe a fair amount of time as well) would be required to reach such a high-risk supplier reduction.
AN ALTERNATE REALITY.
I am unsure whether William Webb’s idea of “The End of Telecoms History” (I really recommend you get his book) will have the same profound impact as Francis Fukuyama’s marvelously thought-provoking book “The End of History and the Last Man“ or be more “right” than Fukuyama’s book. However, I think it may be an oversimplification of his ideas to say that he has been proven wrong. The world of Man may have proven more resistant to “boredom” than the book assumed (as Fukuyama conceded in subsequent writing). Nevertheless, I do not believe history can be over unless the history makers and writers are all gone (which may happen sooner rather than later). History may have long and “boring” periods where little new and disruptive things happen. Still, historically, something so far has always disrupted the hiatus of history, followed by a quieter period (e.g., Pax Romana, European Feudalism, Ming Dynasty, 19th century’s European balance of power, …). The nature of history is cyclic. Stability and disruption are not opposing forces but part of an ongoing dynamic. I don’t think telecommunication would be that different. Parts of what we define as telecom may reach a natural end and settle until it is disrupted again; for example, the fixed telephony services on copper lines were disrupted by emerging mobile technologies driven by radio access technology innovation back in the 90s and until today. Or, like circuit-switched voice-centric technologies, which have been replaced by data-centric packet-switched technologies, putting an “end” to the classical voice-based business model of the incumbent telecommunication corporations.
At some point in the not-so-distant future (2030-2040), all Western European households will be covered by optical fiber and have a fiber-optic access connection with indoor services being served by ultra-WiFi coverage (remember approx. 80% of mobile consumption happens indoors). Mobile broadband networks have by then been redesigned to mainly provide outdoor coverage in urban and suburban areas. These are being modernized at minimum 10-year cycles as the need for innovation is relatively minor and more focused on energy efficiency and CO2 footprint reductions. Direct-to-cell (D2C) LEO satellite or stratospheric drone constellations utilizing a cellular spectrum above 1800 MHz serve outdoor coverage of rural regions, as opposed to the current D2C use of low-frequency bands such as 600 – 800 MHz (as higher frequency bands are occupied terrestrially and difficult to coordinate with LEO Satellite D2C providers). Let’s dream that the telco IT landscape, Core, transport, and routing networks will be fully converged (i.e., no fixed silo, no mobile silo) and autonomous network operations deal with most technical issues, including planning and optimization.
In this alternate reality, you pay for and get a broadband service enabled by a fully integrated broadband network. Not a mobile service served by a mobile broadband network (including own mobile backhaul, mobile aggregation, mobile backbone, and mobile core), and, not a fixed service served by a fixed broadband network different from the mobile infrastructure.
Given the Western European countries addressed in this report (i.e., see details in Further Reading #1), we would need to cover a surface area of 3.6 million square kilometers. To ensure outdoor coverage in urban areas and road networks, we may not need more than about 50,000 cell sites compared to today’s 300 – 400 thousand. If the cellular infrastructure is shared, the effective number of sites that are paid in full would be substantially lower than that.
The required mobile Capex ballpark estimate would be a fifth (including its share of related fixed support investment, e.g., IT, Core, Transport, Switching, Routing, Product development, etc.) of what it otherwise would be if we continue “The Mobile History” as it has been running up to today.
In this “Alternate Reality” ” instead of having a mobile Capex level of about 10% of the total fixed and mobile revenue (~15+% of mobile service revenues), we would be down to between 2% and 3% of the total telecom revenues (assuming it remains reasonably flat at a 2023 level. The fixed investment level would be relatively low, household coverage would be finished, and most households would be connected. If we use numbers of fixed broadband Capex without substantial fiber deployment, that level should not be much higher than 5% of the total revenue. Thus, instead of today’s persistent level of 18% – 20% of the total telecom revenues, in our “Alternate Reality,” it would not exceed 10%. And just imagine what such a change would do to the operational cost structure.
Obviously, this fictive (and speculative) reality would be “The End of Mobile History.”
It would be an “End to Big Capex” and a stop to spending mobile Capex like there is no (better fixed broadband) tomorrow.
This is an end-reflection of where the current mobile network development may be heading unless the industry gets better at optimizing and prioritizing between mobile and fixed broadband. Re-architecting the fundamental design paradigms of mobile network design, plan, and build is required, including an urgent reset of current 6G thinking.
ACKNOWLEDGEMENT.
I greatly acknowledge my wife, Eva Varadi, for her support, patience, and understanding during the creative process of writing this Blog. There should be no doubt that without the support of Russell Waller (New Street Research), this blog would not have been possible. Thank you so much for providing the financial telco data for Western Europe that lays the ground for much of the Capex analysis in this article. This blog has also been published in telecomanalysis.net with some minor changes and updates.
FURTHER READING.
New Street Research covers the following countries in their Quarterly report: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. Across those 15 countries, ca. 56 telcos are covered.
Rupert Wood, “A crisis of overproduction in bandwidth means that telecoms capex will inevitably fall,” Analysys Mason (July 2024). A rather costly (for mortals & their budgets, at least) report called “The end of big capex: new strategic options for the telecoms industry”allegedly demonstrates the crisis.
Danish Investment Screening Act, “Particularly sensitive sectors and activities,” Danish Business Authority, (July 2021). Note that the “Danish Investment Screening Act” is closely aligned with broader European Union (EU) frameworks and initiatives to safeguard critical infrastructure from high-risk foreign suppliers. The Act reflects Denmark’s effort to implement national and EU-level policies to protect sensitive sectors from foreign investments that could pose security risks, particularly in critical infrastructure such as telecommunications, energy, and defense.
German press on high-risk suppliers in German telecommunications networks: “Zeit für den Abschied von Huawei, sagt Innenministerin Faeser” (Handelsblatt, August 18, 2023), “Deutsche Telekom und Huawei: Warum die Abhängigkeit bleibt” (Die Welt, September 7, 2023), “Telekom-Netz: Kritik an schleppendem Rückzug von Huawei-Komponenten” (Der Spiegel, September 20, 2023), “Faeser verschiebt Huawei-Bann und stößt auf heftige Kritik” (Handelsblatt, July 18, 2024), “Huawei-Verbot in 5G-Netzen: Deutschland verschärft, aber langsam” (Tagesschau, July 15, 2024), and “Langsame Fortschritte: Deutschland und das Huawei-Dilemma” (Der Spiegel, September 21, 2024) and many many others.
Kim Kyllesbech Larsen, “Capacity planning in mobile data networks experiencing exponential growth in demand” (April 2012). See slide 5, showing that 50% of all data traffic is generated in 1 cell, 80% of data traffic is carried in up to 3 cells, and only 20% of traffic can be regarded as truly mobile. The presentation has been viewed more than 19 thousand times.
Opanga, “The RAIN AI Platform”, provides a cognitive AI-based solution that addresses (1) Network Optimization lowering Capex demand and increasing the Customer Experience, (2) Energy Reduction above and beyond existing supplier solutions leading to further Opex efficiencies, and (3) Network Intelligence using AI to better manage your network data at a much higher resolution than is possible with classical dashboard applied to technology-driven data lakes.
“From an economic and customer experience standpoint, deploying stratospheric drones may be significantly more cost effective than establishing extra terrestrial infrastructures”.
As a mobile cellular industry expert and a techno-economist, the first time I was presented with the concept of stratospheric drones, I feel the butterflies in my belly. That tingling feeling that I was seeing something that could be a huge disruptor of how mobile cellular networks are being designed and built. Imagine getting rid of the profitability-challenged rural cellular networks (i.e., the towers, the energy consumption, the capital infrastructure investments), and, at the same time, offering much better quality to customers in rural areas than is possible with the existing cellular network we have deployed there. A technology that could fundamentally change the industry’s mobile cellular cost structure for the better at a quantum leap in quality and, in general, provide economical broadband services to the unconnected at a fraction of the cost of our traditional ways of building terrestrial cellular coverage.
Back in 2015, I got involved with Deutsche Telekom AG Group Technology, under the leadership of Bruno Jacobfeuerborn, in working out the detailed operational plans, deployment strategies, and, of course, the business case as well as general economics of building a stratospheric cellular coverage platform from scratch with the UK-based Stratospheric Platform Ltd [2] in which Deutsche Telekom is an investor. The investment thesis was really in the way we expected the stratospheric high-altitude platform to make a large part of mobile operators’ terrestrial rural cellular networks obsolete and how it might strengthen mobile operator footprints in countries where rural and remote coverage was either very weak or non-existing (e.g., The USA, an important market for Deutsche Telekom AG).
At the time, our thoughts were to have an operational stratospheric coverage platform operationally by 2025, 10 years after kicking off the program, with more than 100 high-altitude platforms covering a major Western European country serving rural areas. As it so often is, reality is unforgiving, as it often is with genuinely disruptive ideas. Getting to a stage of deployment and operation at scale of a high-altitude platform is still some years out due to the lack of maturity of the flight platform, including regulatory approvals for operating a HAP network at scale, increasing the operating window of the flight platform, fueling, technology challenges with the advanced antenna system, being allowed to deployed terrestrial-based cellular spectrum above terra firma, etc. Many of these challenges are progressing well, although slowly.
Globally, various companies are actively working on developing stratospheric drones to enhance cellular coverage. These include aerospace and defense giants like Airbus, advancing its Zephyr drone, and BAE Systems, collaborating with Prismatic for their PHASA-35 UAV. One of the most exciting HAPS companies focusing on developing world-leading high-altitude aircraft that I have come across during my planning work on how to operationalize a Stratospheric cellular coverage platform is the German company Leichtwerk AG, which has their hydrogen-fueled StratoStreamer as well as a solar-powered platform under development with the their StratoStreamer being close to production-ready. Telecom companies like Deutsche Telekom AG and BT Group are experimenting with hydrogen-powered drones in partnership with Stratospheric Platforms Limited. Through its subsidiary HAPSMobile, SoftBank is also a significant player with its Sunglider project. Additionally, entities like China Aerospace Science and Technology Corporation and Cambridge Consultants contribute to this field by co-developing enabling technologies (e.g., advanced phased-array antenna, fuel technologies, material science, …) critical for the success and deployability of high-altitude platforms at scale, aiming to improve connectivity in rural, remote, and underserved areas.
The work on integrating High Altitude Platform (HAP) networks with terrestrial cellular systems involves significant coordination with international regulatory bodies like the International Telecommunication Union Radiocommunication Sector (ITU-R) and the World Radiocommunication Conference (WRC). This process is crucial for securing permission to reuse terrestrial cellular spectrum in the stratosphere. Key focus areas include negotiating the allocation and management of frequency bands for HAP systems, ensuring they don’t interfere with terrestrial networks. These efforts are vital for successfully deploying and operating HAP systems, enabling them to provide enhanced connectivity globally, especially in rural areas where terrestrial cellular frequencies are already in use and remote and underserved regions. At the latest WRC-2023 conference, Softbank successfully gained approval within the Asia-Pacific region to use mobile spectrum bands for stratospheric drone-based mobile broadband cellular services.
Most mobile operators have at least 50% of their cellular network infrastructure assets in rural areas. While necessary for providing the coverage that mobile customers have come to expect everywhere, these sites carry only a fraction of the total mobile traffic. Individually, rural sites have poor financial returns due to their proportional operational and capital expenses.
In general, the Opex of the cellular network takes up between 50% and 60% of the Technology Opex, and at least 50% of that can be attributed to maintaining and operating the rural part of the radio access network. Capex is more cyclical than Opex due to, for example, the modernization of radio access technology. Nevertheless, over a typical modernization cycle (5 to 7 years), the rural network demands a little bit less but a similar share of Capex overall as for Opex. Typically, the Opex share of the rural cellular network may be around 10% of the corporate Opex, and its associated total cost is between 12% and 15% of the total expenses.
The global telecom towers market size in 2023 is estimated at ca. 26+ billion euros, ca. 2.5% of total telecom turnover, with a projected growth of CAGR 3.3% from now to 2030. The top 10 Tower management companies manage close to 1 million towers worldwide for mobile CSPs. Although many mobile operators have chosen to spin off their passive site infrastructure, there are still some remaining that may yet to spin off their cellular infrastructure to one of many Tower management companies, captive or independent, such as American Tower (224,019+ towers), Cellnex Telecom (112,737+ towers), Vantage Towers (46,100+ towers), GD Towers (+41,600 towers), etc…
IMAGINE.
Focusing on the low- or no-profitable rural cellular coverage.
Imagine an alternative coverage technology to the normal cellular one all mobile operators are using that would allow them to do without the costly and low-profitable rural cellular network they have today to satisfy their customers’ expectations of high-quality ubiquitous cellular coverage.
For the alternative technology to be attractive, it would need to deliver at least the same quality and capacity as the existing terrestrial-based cellular coverage for substantially better economics.
If a mobile operator with a 40% EBITDA margin did not need its rural cellular network, it could improve its margin by a sustainable 5% and increase its cash generation in relative terms by 50% (i.e., from 0.2×Revenue to 0.3×Revenue), assuming a capex-to-revenue ratio of 20% before implementing the technology being reduced to 15% after due to avoiding modernization and capacity investments in the rural areas.
Imagine that the alternative technology would provide a better cellular quality to the consumer for a quantum leap reduction of the associated cost structure compared to today’s cellular networks.
Such an alternative coverage technology might also impact the global tower companies’ absolute level of sustainable tower revenues, with a substantial proportion of revenue related to rural site infrastructure being at risk.
Figure 1 An example of an unmanned autonomous stratospheric coverage platform. Source: Cambridge Consultants presentation (see reference [2]) based on their work with Stratospheric Platforms Ltd (SPL) and SPL’s innovative high-altitude coverage platform.
TERRESTRIAL CELLULAR RURAL COVERAGE – A MATTER OF POOR ECONOMICS.
When considering the quality we experience in a terrestrial cellular network, a comprehensive understanding of various environmental and physical factors is crucial to predicting the signal quality accurately. All these factors generally work against cellular signal propagation regarding how far the signal can reach from the transmitting cellular tower and the achievable quality (e.g., signal strength) that a customer can experience from a cellular service.
Firstly, the terrain plays a significant role. Rural landscapes often include varied topographies such as hills, valleys, and flat plains, each affecting signal reach differently. For instance, hilly or mountainous areas may cause signal shadowing and reflection, while flat terrains might offer less obstruction, enabling signals to travel further.
At higher frequencies (i.e., above 1 GHz), vegetation becomes an increasingly critical factor to consider. Trees, forests, and other dense foliage can absorb and scatter radio waves, attenuating signals. The type and density of vegetation, along with seasonal changes like foliage density in summer versus winter, can significantly impact signal strength.
The height and placement of transmitting and receiving antennas are also vital considerations. In rural areas, where there are fewer tall buildings, the height of the antenna can have a pronounced effect on the line of sight and, consequently, on the signal coverage and quality. Elevated antennas mitigate the impact of terrain and vegetation to some extent.
Furthermore, the lower density of buildings in rural areas means fewer reflections and less multipath interference than in urban environments. However, larger structures, such as farm buildings or industrial facilities, must be factored in, as they can obstruct or reflect signals.
Finally, the distance between the transmitter and receiver is fundamental to signal propagation. With typically fewer cell towers spread over larger distances, understanding how signal strength diminishes with distance is critical to ensuring reliable coverage at a high quality, such as high cellular throughput, as the mobile customer expects.
The typical way for a cellular operator to mitigate the environmental and physical factors that inevitably result in loss of signal strength and reduced cellular quality (i.e., sub-standard cellular speed) is to build more sites and thus incur increasing Capex and Opex in areas that in general will have poor economical payback associated with any cellular assets. Thus, such investments make an already poor economic situation even worse as the rural cellular network generally would have very low utilization.
Figure 2 Cellular capacity or quality measured by the unit or total throughput is approximately driven by the amount of spectrum (in MHz) times the effective spectral efficiency (in Mbps/MHz/units) times the number of cells or capacity units deployed. When considering the effective spectral efficiency, one needs to consider the possible “boost” that a higher order MiMo or Advanced Antenna System will bring over and above the Single In Single Out (SISO) antenna would result in.
As our alternative technology also would need to provide at least the same quality and capacity it is worth exploring what can be expected in terms of rural terrestrial capacity. In general, we have that the cellular capacity (and quality) can be written as (also shown in Figure 2 above):
Throughput (in Mbps)= Spectral Bandwidth in MHz × Effective Spectral Efficiency in Mbps/MHz/Cell × Number of Cells
We need to keep in mind that an additional important factor when considering quality and capacity is that the higher the operational frequency, the lower the radius (all else being equal). Typically, we can improve the radius at higher frequencies by utilizing advanced antenna beam forming, that is, concentrate the radiated power per unit coverage area, which is why you will often hear that the 3.6 GHz downlink coverage radius is similar to that of 1800 MHz (or PCS). This 3.6 GHz vs. 1.8 GHz coverage radius comparison is made when not all else is equal. Comparing a situation where the 1800 MHz (or PCS) radiated power is spread out over the whole coverage area compared to a coverage situation where the 3.6 GHz (or C-band in general) solution makes use of beamforming, where the transmitted energy density is high, allowing to reach the customer at a range that would not be possible if the 3.6 GHz radiated power would have been spread out over the cell like the example of the 1800 MHz.
As an example, take an average Western European rural 5G site with all cellular bands between 700 and 2100 MHz activated. The site will have a total of 85 MHz DL and 75 MHz UL, with a 10 MHz difference between DL and UL due to band 38 Supplementary Downlink SDL) operational on the site. In our example, we will be optimistic and assume that the effective spectral efficiency is 2 Mbps per MHz per cell (average over all bands and antenna configurations), which would indicate a fair amount of 4×4 and 8×8 MiMo antenna systems deployed. Thus, the unit throughput we would expect to be supplied by the terrestrial rural cell would be 170 Mbps (i.e., 85 MHz × 2.0 Mbps/MHz/Cell). With a rural cell coverage radius between 2 and 3 km, we then have an average throughput per square kilometer of 9 Mbps/km2. Due to the low demand and high-frequency bandwidth per active customer, DL speeds exceeding 100+ Mbps should be relatively easy to sustain with 5G standalone, with uplink speeds being more compromised due to larger coverage areas. Obviously, the rural quality can be improved further by deploying advanced antenna systems and increasing the share of higher-order MiMo antennas in general, as well as increasing the rural site density. However, as already pointed out, this would not be an economically reasonable approach.
THE ADVANTAGE OF SEEING FROM ABOVE.
Figure 3 illustrates the difference between terrestrial cellular coverage from a cell tower and that of a stratospheric drone or high-altitude platform (“Antenna-in-the-Sky”). The benefit of seeing the world from above is that environmental and physical factors have substantially less impact on signal propagation and quality primarily being impacted by distance as it approximates free space propagation. This situation is very different for a terrestrial-based cellular tower with its radiated signal being substantially impacted by the environment as well as physical factors.
It may sound silly to talk about an alternative coverage technology that could replace the need for the cellular tower infrastructure that today is critical for providing mobile broadband coverage to, for example, rural areas. What alternative coverage technologies should we consider?
If, instead of relying on terrestrial-based tower infrastructure, we could move the cellular antenna and possibly the radio node itself to the sky, we would have a situation where most points of the ground would be in the line of sight to the “antenna-in-the-sky.” The antenna in the sky idea is a game changer in terms of coverage itself compared to conventional terrestrial cellular coverage, where environmental and physical factors dramatically reduce signal propagation and signal quality.
The key advantage of an antenna in the sky (AIS) is that the likelihood of a line-of-sight to a point on the ground is very high compared to establishing a line-of-sight for terrestrial cellular coverage that, in general, would be very low. In other words, the cellular signal propagation from an AIS closely approximates that of free space. Thus, all the various environmental signal loss factors we must consider for a standard terrestrial-based mobile network do not apply to our antenna in the sky.
Over the last ten years, we have gotten several technology candidates for our antenna-in-the-sky solution, aiming to provide terrestrial broadband services as a substitute, or enhancement, for terrestrial mobile and fixed broadband services. In the following, I will describe two distinct types of antenna-in-the-sky solutions: (a) Low Earth Orbit (LEO) satellites, operating between 500 to 2000 km above Earth, that provide terrestrial broadband services such as we know from Starlink (SpaceX), OneWeb (Eutelsat Group), and Kuiper (Amazon), and (b) So-called, High Altitude Platforms (HAPS), operating at altitudes between 15 to 30 km (i.e., in the stratosphere). Such platforms are still in the research and trial stages but are very promising technologies to substitute or enhance rural network broadband services. The HAP is supposed to be unmanned, highly autonomous, and ultimately operational in the stratosphere for an extended period (weeks to months), fueled by green hydrogen and possibly solar. The high-altitude platform is thus also an unmanned aerial vehicle (UAV), although I will use the term stratospheric drone and HAP interchangeably in the following.
Low Earth Orbit (LEO) satellites and High Altitude Platforms (HAPs) represent two distinct approaches to providing high-altitude communication and observation services. LEO satellites, operating between 500 km and 2,000 km above the Earth, orbit the planet, offering broad global coverage. The LEO satellite platform is ideal for applications like satellite broadband internet, Earth observation, and global positioning systems. However, deploying and maintaining these satellites involves complex, costly space missions and sophisticated ground control. Although, as SpaceX has demonstrated with the Starlink LEO satellite fixed broadband platform, the unitary economics of their satellites significantly improve by scale when the launch cost is also considered (i.e., number of satellites).
Figure 4 illustrates a non-terrestrial network architecture consisting of a Low Earth Orbit (LEO) satellite constellation providing fixed broadband services to terrestrial users. Each hexagon represents a satellite beam inside the larger satellite coverage area. Note that, in general, there will be some coverage overlap between individual satellites, ensuring a continuous service including interconnected satellites. The user terminal (UT) dynamically aligns itself, aiming at the best quality connection provided by the satellites within the UT field of vision.
Figure 4 Illustrating a Non-Terrestrial Network consisting of a Low Earth Orbit (LEO) satellite constellation providing fixed broadband services to terrestrial users (e.g., Starlink, Kuiper, OneWeb,…). Each hexagon represents a satellite beam inside the larger satellite coverage area. Note that, in general, there will be some coverage overlap between individual satellites, ensuring a continuous service. The operating altitude of a LEO satellite constellation is between 300 and 2,000 km. It is assumed that the satellites are interconnected, e.g., laser links. The User Terminal antenna (UT) is dynamically orienting itself after the best line-of-sight (in terms of signal quality) to a satellite within UT’s field-of-view (FoV). The FoV has not been shown in the picture above so as not to overcomplicate the illustration. It should be noted just like with the drone it is possible to integrate the complete gNB on the LEO satellite. There might even be applications (e.g., defense, natural & unnatural disaster situations, …) where a standalone 5G SA core is integrated.
On the other hand, HAPs, such as unmanned (autonomous) stratospheric drones, operate at altitudes of approximately 15 km to 30 km in the stratosphere. Unlike LEO satellites, the stratospheric drone can hover or move slowly over specific areas, often geostationary relative to the Earth’s surface. This characteristic makes them more suitable for localized coverage tasks like regional broadband, surveillance, and environmental monitoring. The deployment and maintenance of the stratospheric drones are managed from the Earth’s surface and do not require space launch capabilities. Furthermore, enhancing and upgrading the HAPs is straightforward, as they will regularly be on the ground for fueling and maintenance. Upgrades are not possible with an operational LEO satellite solution where any upgrade would have to wait on a subsequent generation and new launch.
Figure 5 illustrates the high-level network architecture of an unmanned autonomous stratospheric drone-based constellation providing terrestrial cellular broadband services to terrestrial mobile users delivered to their normal 5G terminal equipment. Each hexagon represents a beam arising from the phased-array antenna integrated into the drone’s wingspan. To deliver very high-availability services to a rural area, one could assign three HAPs to cover a given area. The drone-based non-terrestrial network is drawn consistent with the architectural radio access network (RAN) elements from Open RAN, e.g., Radio Unit (RU), Distributed Unit (DU), and Central Unit (CU). It should be noted that the whole 5G gNB (the 5G NodeB), including the CU, could be integrated into the stratospheric drone, and in fact, so could the 5G standalone (SA) packet core, enabling full private mobile 5G networks for defense and disaster scenarios or providing coverage in very remote areas with little possibility of ground-based infrastructure (e.g., the arctic region, or desert and mountainous areas).
Figure 5 illustrates a Non-Terrestrial Network consisting of a stratospheric High Altitude Platform (HAP) drone-based constellation providing terrestrial Cellular broadband services to terrestrial mobile users delivered to their normal 5G terminal equipment. Each hexagon represents a beam inside the larger coverage area of the stratospheric drone. To deliver very high-availability services to a rural area, one could assign three HAPs to cover a given area. The operating altitude of a HAP constellation is between 10 to 50 km with an optimum of around 20 km. It is assumed that there is inter-HAP connectivity, e.g., via laser links. Of course, it is also possible to contemplate having the gNB (full 5G radio node) in the stratospheric drone entirely, which would allow easier integration with LEO satellite backhauls, for example. There might even be applications (e.g., defense, natural & unnatural disaster situations, …) where a standalone 5G SA core is integrated.
The unique advantage of the HAP operating in the stratosphere is (1) The altitude is advantageous for providing wider-area cellular coverage with a near-ideal quality above and beyond what is possible with conventional terrestrial-based cellular coverage because of very high line-of-sight likelihood due to less environment and physical issues that substantially reduces the signal propagation and quality of a terrestrial coverage solution, and (2) More stable atmospheric conditions characterize the stratosphere compared to the troposphere below it. This stability allows the stratospheric drone to maintain a consistent position and altitude with less energy expenditure. The stratosphere offers more consistent and direct sunlight exposure for a solar-powered HAP with less atmospheric attenuation. Moreover, due to the thinner atmosphere at stratospheric altitudes, the stratospheric drone will experience a lower air resistance (drag), increasing the energy efficiency and, therefore, increasing the operational airtime.
Figure 6 illustrates Leichtwerk AG’s StratoStreamer HAP design that is near-production ready. Leichtwerk AG works closely together with AESA towards the type certificate that would make it possible to operationalize a drone constellation in Europe. The StratoStreamer has a wingspan of 65 meter and can carry a payload of 100+ kg. Courtesy: Leichtwerk AG.
Each of these solutions has its unique advantages and limitations. LEO satellites provide extensive coverage but come with higher operational complexities and costs. HAPs offer more focused coverage and are easier to manage, but they need the global reach of LEO satellites. The choice between these two depends on the specific requirements of the intended application, including coverage area, budget, and infrastructure capabilities.
In an era where digital connectivity is indispensable, stratospheric drones could emerge as a game-changing technology. These unmanned (autonomous) drones, operating in the stratosphere, offer unique operational and economic advantages over terrestrial networks and are even seen as competitive alternatives to low earth orbit (LEO) satellite networks like Starlink or OneWeb.
STRATOSPHERIC DRONES VS TERRESTRIAL NETWORKS.
Stratospheric drones positioned much closer to the Earth’s surface than satellites, provide distinct signal strength and latency benefits. The HAP’s vantage point in the stratosphere (around 20 km above the Earth) ensures a high probability of line-of-sight with terrestrial user devices, mitigating the adverse effects of terrain obstacles that frequently challenge ground-based networks. This capability is particularly beneficial in rural areas in general and mountainous or densely forested areas, where conventional cellular towers struggle to provide consistent coverage.
Why the stratosphere? The stratosphere is the layer of Earth’s atmosphere located above the troposphere, which is the layer where weather occurs. The stratosphere is generally characterized by stable, dry conditions with very little water vapor and minimal horizontal winds. It is also home to the ozone layer, which absorbs and filters out most of the Sun’s harmful ultraviolet radiation. It is also above the altitude of commercial air traffic, which typically flies at altitudes ranging from approximately 9 to 12 kilometers (30,000 to 40,000 feet). These conditions (in addition to those mentioned above) make operating a stratospheric platform very advantageous.
Figure 6 illustrates the coverage fundamentals of (a) a terrestrial cellular radio network with the signal strength and quality degrading increasingly as one moves away from the antenna and (b) the terrestrial coverage from a stratospheric drone (antenna in the sky) flying at an altitude of 15 to 30 km. The stratospheric drone, also called a High-Altitude Platform (HAP), provides near-ideal signal strength and quality due to direct line-of-sight (LoS) with the ground, compared to the signal and quality from a terrestrial cellular site that is influenced by its environment and physical factors and the fact that LoS is much less likely in a conventional terrestrial cellular network. It is worth keeping in mind that the coverage scenarios where a stratospheric drone and a low earth satellite may excel in particular are in rural areas and outdoor coverage in more dense urban areas. In urban areas, the clutter, or environmental features and objects, will make line-of-site more challenging, impacting the strength and quality of the radio signals.
Figure 6 The chart above illustrates the coverage fundamentals of (a) a terrestrial cellular radio network with the signal strength and quality degrading increasingly as one moves away from the antenna and (b) the terrestrial coverage from a stratospheric drone (antenna in the sky) flying at an altitude of 15 to 30 km. The stratospheric drone, also called a High Altitude Platform (HAP), provides near-ideal signal strength and quality due to direct line-of-sight (LoS) with the ground, compared to the signal & quality from a terrestrial cellular site that is influenced by its environment and physical factors and the fact that LoS is much less likely in a conventional terrestrial cellular network.
From an economic and customer experience standpoint, deploying stratospheric drones may be significantly more cost-effective than establishing extensive terrestrial infrastructure, especially in remote or rural areas. The setup and operational costs of cellular towers, including land acquisition, construction, and maintenance, are substantially higher compared to the deployment of stratospheric drones. These aerial platforms, once airborne, can cover vast geographical areas, potentially rendering numerous terrestrial towers redundant. At an operating height of 20 km, one would expect a coverage radius ranging from 20 km up to 500 km, depending on the antenna system, application, and business model (e.g., terrestrial broadband services, surveillance, environmental monitoring, …).
The stratospheric drone-based coverage platform, and by platform, I mean the complete infrastructure that will replace the terrestrial cellular network, will consist of unmanned autonomous drones with a considerable wingspan (e.g., 747-like of ca. 69 meters). For example, European (German) Leichtwerk’s StratoStreamer has a wingspan of 65 meters and a wing area of 197 square meters with a payload of 120+ kg (note: in comparison a Boing 747 has ca. 500+ m2 wing area but its payload is obviously much much higher and in the range of 50 to 60 metric tons). Leichtwerk AG work closely together with AESA in order to achieve the European Union Aviation Safety Agency (EASA) type certificate that would allow the HAPS to integrate into civil airspace (see refs. [34] for what that means).
An advanced antenna system is positioned under the wings (or the belly) of the drone. I will assume that the coverage radius provided by a single drone is 50 km, but it can dynamically be made smaller or larger depending on the coverage scenario and use case. The drone-based advanced antenna system breaks up the coverage area (ca. six thousand five hundred plus square kilometers) into 400 patches (i.e., a number that can be increased substantially), averaging approx. 16 km2 per patch and a radius of ca. 2.5 km. Due to its near-ideal cellular link budget, the effective spectral efficiency is expected to be initially around 6 Mbps per MHz per cell. Additionally, the drone does not have the same spectrum limitations as a rural terrestrial site and would be able to support frequency bands in the downlink from ~900 MHz up to 3.9 GHz (and possibly higher, although likely with different antenna designs). Due to the HAP altitude, the Earth-to-HAP uplink signal will be limited to a lower frequency spectrum to ensure good signal quality is being received at the stratospheric antenna. It is prudent to assume a limit of 2.1 GHz to possibly 2.6 GHz. All under the assumption that the stratospheric drone operator has achieved regulatory approval for operating the terrestrial cellular spectrum from their coverage platform. It should be noted that today, cellular frequency spectrum approved for terrestrial use cannot be used at an altitude unless regulatory permission has been given (more on this later).
Let’s look at an example. We would need ca. 46 drones to cover the whole of Germany with the above-assumed specifications. Furthermore, if we take the average spectrum portfolio of the 3 main German operators, this will imply that the stratospheric drone could be functioning with up to 145 MHz in downlink and at least 55 MHz uplink (i.e., limiting UL to include 2.1 GHz). Using the HAP DL spectral efficiency and coverage area we get a throughput density of 70+ Mbps/km2 and an effective rural cell throughput of 870 Mbps. In terrestrial-based cellular coverage, the contribution to quality at higher frequencies is rapidly degrading as a function of the distance to the antenna. This is not the case for HAP-based coverage due to its near-ideal signal propagation.
In comparison, the three incumbent German operators have on average ca. 30±4k sites per operator with an average terrestrial coverage area of 12 km2 and a coverage radius of ca. 2.0 km (i.e., smaller in cities, ~1.3 km, larger in rural areas, ~2.7 km). Assume that the average cost of ownership related only to the passive part of the site is 20+ thousand euros and that 50% of the 30k sites (expect a higher number) would be redundant as the rural coverage would be replaced by stratospheric drones. Such a site reduction quantum conservatively would lead to a minimum gross monetary reduction of 300 million euros annually (not considering the cost of the alternative technology coverage solution).
In our example, the question is whether we can operate a stratospheric drone-based platform covering rural Germany for less than 300 million euros yearly. Let’s examine this question. Say the stratospheric drone price is 1 million euros per piece (similar to the current Starlink satellite price, excluding the launch cost, which would add another 1.1 million euros to the satellite cost). For redundancy and availability purposes, we assume we need 100 stratospheric drones to cover rural Germany, allowing me to decommission in the radius of 15 thousand rural terrestrial sites. The decommissioning cost and economical right timing of tower contract termination need to be considered. Due to the standard long-term contracts may be 5 (optimistic) to 10+ years (realistic) year before the rural network termination could be completed. Many Telecom businesses that have spun out their passive site infrastructure have done so in mutual captivity with the Tower management company and may have committed to very “sticky” contracts that have very little flexibility in terms of site termination at scale (e.g., 2% annually allowed over total portfolio).
We have a capital expense of 100 million for the stratospheric drones. We also have to establish the support infrastructure (e.g., ground stations, airfield suitability rework, development, …), and consider operational expenses. The ballpark figure for this cost would be around 100 million euros for Capex for establishing the supporting infrastructure and another 30 million euros in annual operational expenses. In terms of steady-state Capex, it should be at most 20 million per year. In our example, the terrestrial rural network would have cost 3 billion euros, mainly Opex, over ten years compared to 700 million euros, a little less than half as Opex, for the stratospheric drone-based platform (not considering inflation).
The economical requirements of a stratospheric unmanned and autonomous drone-based coverage platform should be superior compared to the current cellular terrestrial coverage platform. As the stratospheric coverage platform scales and increasingly more stratospheric drones are deployed, the unit price is also likely to reduce accordingly.
Spectrum usage rights yet another critical piece.
It should be emphasized that the deployment of cellular frequency spectrum in stratospheric and LEO satellite contexts is governed by a combination of technical feasibility, regulatory frameworks, coordination to prevent interference, and operational needs. The ITU, along with national regulatory bodies, plays a central role in deciding the operational possibilities and balancing the needs and concerns of various stakeholders, including satellite operators, terrestrial network providers, and other spectrum users. Today, there are many restrictions and direct regulatory prohibitions in repurposing terrestrially assigned cellular frequencies for non-terrestrial purposes.
The role of the World Radiocommunications Conference (WRC) role is pivotal in managing the global radio-frequency spectrum and satellite orbits. Its decisions directly impact the development and deployment of various radiocommunication services worldwide, ensuring their efficient operation and preventing interference across borders. The WRC’s work is fundamental to the smooth functioning of global communication networks, from television and radio broadcasting to cellular networks and satellite-based services. The WRC is typically held every three to four years, with the latest one, WRC-23, held in Dubai at the end of 2023, reference [13] provides the provisional final acts of WRC-23 (December 2023). In landmark recommendation, WRC-23 relaxed the terrestrial-only conditions for the 698 to 960 MHz and 1,71 to 2.17 GHz, and 2.5 to 2.69 GHz frequency bands to also apply for high-altitude platform stations (HAPS) base stations (“Antennas-in -Sky”). It should be noted that there are slightly different frequency band ranges and conditions, depending on which of the three ITU-R regions (as well as exceptions for particular countries within a region) the system will be deployed in. Also the HAPS systems do not enjoy protection or priority over existing use of those frequency bands terrestrially. It is important to note that the WRC-23 recommendation only apply to coverage platforms (i.e., HAPS) in the range from 20 to 50 km altitude. These WRC-23 frequency-bands relaxation does not apply to satellite operation. With the recognized importance of non-terrestrial networks and the current standardization efforts (e.g., towards 6G), it is expected that the fairly restrictive regime on terrestrial cellular spectrum may be relaxed further to also allow mobile terrestrial spectrum to be used in “Antenna-in-the-Sky” coverage platforms. Nevertheless, HAPS and terrestrial use of cellular frequency spectrum will have to be coordinated to avoid interference and resulting capacity and quality degradation.
SoftBank announced recently (i.e., 28 December 2023 [11]), after deliberations at the WRC-23, that they had successfully gained approval within the Asia-Pacific region (i.e., ITU-R region 3) to use mobile spectrum bands, namely 700-900MHz, 1.7GHz, and 2.5GHz, for stratospheric drone-based mobile broadband cellular services (see also refs. [13]). As a result of this decision, operators in different countries and regions will be able to choose a spectrum with greater flexibility when they introduce HAPS-based mobile broadband communication services, thereby enabling seamless usage with existing smartphones and other devices.
Another example of re-using terrestrial licensed cellular spectrum above ground is SpaceX direct-to-cell capable 2nd generation Starlink satellites.
On January 2nd, 2024, SpaceX launched their new generation of Starlink satellites with direct-to-cell capabilities to close a connection to a regular mobile cellular phone (e.g., smartphone). The new direct-to-cell Starlink satellites use T-Mobile US terrestrial licensed cellular frequency band (i.e., 2×5 MHz Band 25, PCS G-block) and will work, according to T-Mobile US, with most of their existing mobile phones. The initial direct-to-cell commercial plans will only support low-bandwidth text messaging and no voice or more bandwidth-heavy applications (e.g., streaming). Expectations are that the direct-to-cell system would deliver up to 18.3 Mbps (3.66 Mbps/MHz/cell) downlink and up to 7.2 Mbps (1.44 Mbps/MHz/cell) uplink over a channel bandwidth of 5 MHz (maximum).
Given that terrestrial 4G LTE systems struggle with such performance, it will be super interesting to see what the actual performance of the direct-to-cell satellite constellation will be.
COMPARISON WITH LEO SATELLITE BROADBAND NETWORKS.
When juxtaposed with LEO satellite networks such as Starlink (SpaceX), OneWeb (Eutelsat Group), or Kuiper (Amazon), stratospheric drones offer several advantages. Firstly, the proximity to the Earth’s surface (i.e., 300 – 2,000 km) results in lower latency, a critical factor for real-time applications. While LEO satellites, like those used by Starlink, have reduced latency (ca. 3 ms round-trip-time) compared to traditional geostationary satellites (ca. 240 ms round-trip-time), stratospheric drones can provide even quicker response times (one-tenth of an ms in round-trip-time), making the stratospheric drone substantially more beneficial for applications such as emergency services, telemedicine, and high-speed internet services.
A stratospheric platform operating at 20 km altitude and targeting surveillance, all else being equal, would be 25 times better at distinguishing objects apart than an LEO satellite operating at 500 km altitude. The global aerial imaging market is expected to exceed 7 billion euros by 2030, with a CAGR of 14.2% from 2021. The flexibility of the stratospheric drone platform allows for combining cellular broadband services and a wide range of advanced aerial imaging services. Again, it is advantageous that the stratospheric drone regularly returns to Earth for fueling, maintenance, and technology upgrades and enhancements. This is not possible with an LEO satellite platform.
Moreover, the deployment and maintenance of stratospheric drones are, in theory, less complex and costly than launching and maintaining a constellation of satellites. While Starlink and similar projects require significant upfront investment for satellite manufacturing and rocket launches, stratospheric drones can be deployed at a fraction of the cost, making them a more economically viable option for many applications.
The Starlink LEO satellite constellation currently is the most comprehensive satellite (fixed) broadband coverage service. As of November 2023, Starlink had more than 5,000 satellites in low orbit (i.e., ca. 550 km altitude), and an additional 7,000+ are planned to be deployed, with a total target of 12+ thousand satellites. The current generation of Starlink satellites has three downlink phased-array antennas and one uplink phase-array antenna. This specification translates into 48 beams downlink (satellite to ground) and 16 beams uplink (ground to satellite). Each Starlink beam covers approx. 2,800 km2 with a coverage range of ca. 30 km, over which a 250 MHz downlink channel (in the Ku band) has been assigned. According to Portillo et al. [14], the spectral efficiency is estimated to be 2.7 Mbps per MHz, providing a total throughput of a maximum of 675 Mbps in the coverage area or a throughput density of ca. 0.24 Mbps per km2.
According to the latest Q2-2023 Ookla speed test it is found that “among the 27 European countries that were surveyed, Starlink had median download speeds greater than 100 Mbps in 14 countries, greater than 90 Mbps in 20 countries, and greater than 80 in 24 countries, with only three countries failing to reach 70 Mbps” (see reference [18]). Of course, the actual customer experience will depend on the number of concurrent users demanding resources from the LEO satellite as well as weather conditions, proximity of other users, etc. Starlink themselves seem to have set an upper limit of 220 Mbps download speed for their so-called priority service plan or otherwise 100 Mbps (see [19] below). Quite impressive performance if there are no other broadband alternatives available.
According to Elon Musk, SpaceX aims to reduce each Starlink satellite’s cost to less than one million euros. However, according to Elon Musk, the unit price will depend on the design, capabilities, and production volume. The launch cost using the SpaceX Falcon 9 launch vehicle starts at around 57 million euros, and thus, the 50 satellites would add a launch cost of ca. 1.1 million euros per satellite. SpaceX operates, as of September 2023, 150 ground stations (“Starlink Gateways”) globally that continue to connect the satellite network with the internet and ground operations. At Starlink’s operational altitude, the estimated satellite lifetime is between 5 and 7 years due to orbital decay, fuel and propulsion system exhaustion, and component durability. Thus, a LEO satellite business must plan for satellite replacement cycles. This situation differs greatly from the stratospheric drone-based operation, where the vehicles can be continuously maintained and upgraded. Thus, they are significantly more durable, with an expected useful lifetime exceeding ten years and possibly even 20 years of operational use.
Let’s consider our example of Germany and what it would take to provide LEO satellite coverage service targeting rural areas. It is important to understand that a LEO satellite travels at very high speeds (e.g., upwards of 30 thousand km per hour) and thus completes an orbit around Earth in between 90 to 120 minutes (depending on the satellite’s altitude). It is even more important to remember that Earth rotates on its axis (i.e., 24 hours for a full rotation), and the targeted coverage area will have moved compared to a given satellite orbit (this can easily be several hundreds to thousands of kilometers). Thus, to ensure continuous satellite broadband coverage of the same area on Earth, we need a certain number of satellites in a particular orbit and several orbits to ensure continuous coverage at a target area on Earth. We would need at least 210 satellites to provide continuous coverage of Germany. Most of the time, most satellites would not cover Germany, and the operational satellite utilization will be very low unless other areas outside Germany are also being serviced.
Economically, using the Starlink numbers above as a guide, we incur a capital expense of upwards of 450 million euros to realize a satellite constellation that could cover Germany. Let’s also assume that the LEO satellite broadband operator (e.g., Starlink) must build and launch 20 satellites annually to maintain its constellation and thus incur an additional Capex of ca. 40+ million euros annually. This amount does not account for the Capex required to build the ground network and the operations center. Let’s say all the rest requires an additional 10 million euros Capex to realize and for miscellaneous going forward. The technology-related operational expenses should be low, at most 30 million euros annually (this is a guesstimate!) and likely less. So, covering Germany with an LEO broadband satellite platform over ten years would cost ca. 1.3 billion euros. Although substantially more costly than our stratospheric drone platform, it is still less costly than running a rural terrestrial mobile broadband network.
Despite being favorable compared in economic to the terrestrial cellular network, it is highly unlikely to make any operational and economic sense for a single operator to finance such a network, and it would probably only make sense if shared between telecom operators in a country and even more so over multiple countries or states (e.g., European Union, United States, PRC, …).
Despite the implied silliness of a single mobile operator deploying a satellite constellation for a single Western European country (irrespective of it being fairly large), the above example serves two purposes; (1) To illustrates how economically in-efficient rural mobile networks are that a fairly expansive satellite constellation could be more favorable. Keep in mind that most countries have 3 or 4 of them, and (2) It also shows that the for operators to share the economics of a LEO satellite constellation over larger areal footprint may make such a strategy very attractive economically,
Due to the path loss at 550 km (LEO) being substantially higher than at 20 km (stratosphere), all else being equal, the signal quality of the stratospheric broadband drone would be significantly better than that of the LEO satellite. However, designing the LEO satellite with more powerful transmitters and sensitive receivers can compensate for the factor of almost 30 in altitude difference to a certain extent. Clearly, the latency performance of the LEO satellite constellation would be inferior to that of the stratospheric drone-based platform due to the significantly higher operating altitude.
It is, however, the capacity rather than shared cost could be the stumbling block for LEOs: For a rural cellular network or stratospheric drone platform, we see the MNOs effectively having “control” over the capex costs of the network, whether it be the RAN element for a terrestrial network, or the cost of whole drone network (even if it in the future, this might be able to become a shared cost).
However, for the LEO constellation, we think the economics of a single MNO building a LEO constellation even for their own market is almost entirely out of the question (ie multiple €bn capex outlay). Hence, in this situation, the MNOs will rely on a global LEO provider (ie Starlink, or AST Space Mobile) and will “lend” their spectrum to their in their respective geography in order to provide service. Like the HAPs, this will also require further regulatory approvals in order to free up terrestrial spectrum for satellites in rural areas.
We do not yet have the visibility of the payments the LEOs will require, so there is the potential that this could be a lower cost alternative again to rural networks, but as we show below, we think the real limitation for LEOs might not be the shared capacity rental cost, but that there simply won’t be enough capacity available to replicate what a terrestrial network can offer today.
However, the stratospheric drone-based platform provides a near-ideal cellular performance to the consumer, close to the theoretical peak performance of a terrestrial cellular network. It should be emphasized that the theoretical peak cellular performance is typically only experienced, if at all, by consumers if they are very near the terrestrial cellular antenna and in a near free-space propagation environment. This situation is a very rare occurrence for the vast majority of mobile consumers.
Figure 7 summarizes the above comparison between a rural terrestrial cellular network with the non-terrestrial cellular networks such as LEO satellites and Stratospheric drones.
Figure 7 Illustrating a comparison between terrestrial cellular coverage with stratospheric drone-based (“Antenna-in-the-sky”) cellular coverage and Low Earth Orbit (LEO) satellite coverage options.
While the majority of the 5,500+ Starlink constellation is 13 GHz (Ku-band), at the beginning of 2024, Space X launched a few 2nd generation Starlink satellites that support direct connections from the satellite to a normal cellular device (e.g., smartphone), using 5 MHz of T-Mobile USA’s PCS band (1900 MHz). The targeted consumer service, as expressed by T-Mobile USA, is providing texting capabilities over areas with no or poor existing cellular coverage across the USA. This is fairly similar to services at similar cellular coverage areas presently offered by, for example, AST SpaceMobile, OmniSpace, and Lynk Global LEO satellite services with reported maximum speed approaching 20 Mbps. The so-called Direct-2-Device, where the device is a normal smartphone without satellite connectivity functionality, is expected to develop rapidly over the next 10 years and continue to increase the supported user speeds (i.e., utilized terrestrial cellular spectrum) and system capacity in terms of smaller coverage areas and higher number of satellite beams.
Table 1 below provides an overview of the top 10 LEO satellite constellations targeting (fixed) internet services (e.g., Ku band), IoT and M2M services, and Direct-to-Device (or direct-to-cell) services. The data has been compiled from the NewSpace Index website, which should be with data as of 31st of December 2023. The Top-10 satellite constellation rank has been based on the number of launched satellites until the end of 2023. Two additional Direct-2-Cell (D2C or Direct-to-Device, D2D) LEO satellite constellations are planned for 2024-2025. One is SpaceX Starlink 2nd generation, which launched at the beginning of 2024, using T-Mobile USA’s PCS Band to connect (D2D) to normal terrestrial cellular handsets. The other D2D (D2C) service is Inmarsat’s Orchestra satellite constellation based on L-band (for mobile terrestrial services) and Ka for fixed broadband services. One new constellation (Mangata Networks) targeting 5G services. With two 5G constellations already launched, i.e., Galaxy Space (Yinhe) launched 8 LEO satellites, 1,000 planned using Q- and V-bands (i.e., not a D2D cellular 5G service), and OmniSpace launched two satellites and have planned 200 in total. Moreover, currently, there is one planned constellation targeting 6G by the South Korean Hanwha Group (a bit premature, but interesting nevertheless) with 2,000 6G LEO Satellites planned. Most currently launched and planned satellite constellations offering (or plan to provide) Direct-2-Cell services, including IoT and M2M, are designed for low-frequency bandwidth services that are unlikely to compete with terrestrial cellular networks’ quality of service where reasonable good coverage (or better) exists.
In Table 1 below, we then show 5 different services with the key input variables as cell radius, spectral efficiency and downlink spectrum. From this we can derive what the “average” capacity could be per square kilometer of rural coverage.
We focus on this metric as the best measure of capacity available once multiple users are on the service the spectrum available is shared. This is different from “peak” speeds which are only relevant in the case of very few users per cell.
We start with terrestrial cellular today for bands up to 2.1GHz and show that assuming a 2.5km cell radius, the average capacity is equivalent to 11Mbps per sq.km.
For a LEO service using Ku-band, i.e., with 250MHz to an FWA dish, the capacity could be ca. 2Mbps per sq.km.
For a LEO-based D2D device, what is unknown is what the ultimate spectrum allowance could be for satellite services with cellular spectrum bands, and spectral efficiency. Giving the benefit of the doubt on both, but assuming the beam radius is always going to be larger, we can get to an “optimistic” future target of 2Mbps per sq. km, i.e., 1/5th of a rural terrestrial network.
Finally, we show for a stratospheric drone, that given similar cell radius to a rural cell today, but with higher downlink available and greater spectral efficiency, we can reach ca. 55Mbps per sq. km, i.e. 5x what a current rural network can offer.
INTEGRATING WITH 5G AND BEYOND.
The advent of 5G, and eventually 6G, technology brings another dimension to the utility of stratospheric drones delivering mobile broadband services. The high-altitude platform’s ability to seamlessly integrate with existing 5G networks makes them an attractive option for expanding coverage and enhancing network capacity at superior economics, particularly in rural areas where the economics for terrestrial-based cellular coverage tend to be poor. Unlike terrestrial networks that require extensive groundwork for 5G rollout, the non-terrestrial network operator (NTNO) can rapidly deploy stratospheric drones to provide immediate 5G coverage over large areas. The high-altitude platform is also incredibly flexible compared to both LEO satellite constellations and conventional rural cellular network flexibility. The platform can easily be upgraded during its ground maintenance window and can be enhanced as the technology evolves. For example, upgrading to and operationalizing 6G would be far more economical with a stratospheric platform than having to visit thousands or more rural sites to modernize or upgrade the installed active infrastructure.
SUMMARY.
Stratospheric drones represent a significant advancement in the realm of wireless communication. Their strategic positioning in the stratosphere offers superior coverage and connectivity compared to terrestrial networks and low-earth satellite solutions. At the same time, their economic efficiency makes them an attractive alternative to ground-based infrastructures and LEO satellite systems. As technology continues to evolve, these high-altitude platforms (HAPs) are poised to play a crucial role in shaping the future of global broadband connectivity and ultra-high availability connectivity solutions, complementing the burgeoning 5G networks and paving the way for next-generation three-dimensional communication solutions. Moving away from today’s flat-earth terrestrial-locked communication platforms.
The strategic as well as the disruptive potential of the unmanned autonomous stratospheric terrestrial coverage platform is enormous, as shown in this article. It has the potential to make most of the rural (at least) cellular infrastructure redundant, resulting in substantial operational and economic benefits to existing mobile operators. At the same time, the HAPs could, in rural areas, provide much better service overall in terms of availability, improved coverage, and near-ideal speeds compared to what is the case in today’s cellular networks. It might also, at scale, become a serious competitive and economical threat to LEO satellite constellations, such as, for example, Starlink and Kuipers, that would struggle to compete on service quality and capacity compared to a stratospheric coverage platform.
Although the strategic, economic, as well as disruptive potential of the unmanned autonomous stratospheric terrestrial coverage platform is enormous, as shown in this article, the flight platform and advanced antenna technology are still in a relatively early development phase. Substantial regulatory work remains in terms of permitting the terrestrial cellular spectrum to be re-used above terra firma at the “Antenna-in-the-Sky. The latest developments out of WRC-23 for Asia Pacific appear very promising, showing that we are moving in the right direction of re-using terrestrial cellular spectrum in high-altitude coverage platforms. Last but not least, operating an unmanned (autonomous) stratospheric platform involves obtaining certifications as well as permissions and complying with various flight regulations at both national and international levels.
Terrestrial Mobile Broadband Network – takeaway:
It is the de facto practice for mobile cellular networks to cover nearly 100% geographically. The mobile consumer expects a high-quality, high-availability service everywhere.
A terrestrial mobile network has a relatively low area coverage per unit antenna with relatively high capacity and quality.
Mobile operators incur high and sustainable infrastructure costs, especially in rural areas with low or no return on that cost.
Physical obstructions and terrain limit performance (i.e., non-free space characteristics).
Well-established technology with high reliability.
The potential for high bandwidth and low latency in urban areas with high demand may become a limiting factor for LEO satellite constellations and stratospheric drone-based platforms. Thus, it is less likely to provide operational and economic benefits covering high-demand, dense urban, and urban areas.
LEO Satellite Network – takeaway:
The technology is operational and improving. There is currently some competition (e.g., Starlink, Kuiper, OneWeb, etc.) in this space, primarily targeting fixed broadband and satellite backhaul services. Increasingly, new LEO satellite-based business models are launched providing lower-bandwidth cellular-spectrum based direct-to-device (D2D) text, 4G and 5G services to regular consumer and IoT devices (i.e., Starlink, Lynk Global, AST SpaceMobile, OmniSpace, …).
Broader coverage, suitable for global reach. It may only make sense when the business model is viewed from a worldwide reach perspective (e.g., Starlink, OneWeb,…), resulting in much-increased satellite network utilization.
An LEO satellite broadband network can cover a vast area per satellite due to its high altitude. However, such systems are in nature capacity-limited, although beam-forming antenna technologies (e.g., phased array antennas) allow better capacity utilization.
The LEO satellite solutions are best suited for low-population areas with limited demand, such as rural and largely unpopulated areas (e.g., sea areas, deserts, coastlines, Greenland, polar areas, etc.).
Much higher latency compared to terrestrial and drone-based networks.
Less flexible once in orbit. Upgrades and modernization only via replacement.
The LEO satellite has a limited useful operational lifetime due to its lower orbital altitude (e.g., 5 to 7 years).
Lower infrastructure cost for rural coverage compared to terrestrial networks, but substantially higher than drones when targeting regional areas (e.g., Germany or individual countries in general).
Complementary to the existing mobile business model of communications service providers (CSPs) with a substantial business risk to CSPs in low-population areas where little to no capacity limitations may occur.
Requires regulatory permission (authorization) to operate terrestrial frequencies on the satellite platform over any given country. This process is overseen by national regulatory bodies in coordination with the International Telecommunication Union (ITU) as well as national regulators (e.g., FCC in the USA). Satellite operators must apply for frequency bands for uplink and downlink communications and coordinate with the ITU to avoid interference with other satellites and terrestrial systems. In recent years, however, there has been a trend towards more flexible spectrum regulations, allowing for innovative uses of the spectrum like integrating terrestrial and satellite services. This flexibility is crucial in accommodating new technologies and service models.
Operating a LEO satellite constellation requires a comprehensive set of permissions and certifications that encompass international and national space regulations, frequency allocation, launch authorization, adherence to space debris mitigation guidelines, and various liability and insurance requirements.
Both LEO and MEO satellites is likely going to be complementary or supplementary to stratospheric drone-based broadband cellular networks offering high-performing transport solutions and possible even acts as standalone or integrated (with terrestrial networks) 5G core networks or “clouds-in-the-sky”.
Stratospheric Drone-Based Network – takeaway:
It is an emerging technology with ongoing research, trials, and proof of concept.
A stratospheric drone-based broadband network will have lower deployment costs than terrestrial and LEO satellite broadband networks.
In rural areas, the stratospheric drone-based broadband network offers better economics and near-ideal quality than terrestrial mobile networks. In terms of cell size and capacity, it can easily match that of a rural mobile network.
The solution offers flexibility and versatility and can be geographically repositioned as needed. The versatility provides a much broader business model than “just” an alternative rural coverage solution (e.g., aerial imaging, surveillance, defense scenarios, disaster area support, etc.).
Reduced latency compared to LEO satellites.
Also ideal for targeted or temporary coverage needs.
Complementary to the existing mobile business model of communications service providers (CSPs) with additional B2B and public services business potential from its application versatility.
Potential substantial negative impact on the telecom tower business as the stratospheric drone-based broadband network would make (at least) rural terrestrial towers redundant.
May disrupt a substantial part of the LEO satellite business model due to better service quality and capacity leaving the LEO satellite constellations revenue pool to remote areas and specialized use cases.
Requires regulatory permission to operate terrestrial frequencies (i.e., frequency authorization) on the stratospheric drone platform (similar to LEO satellites). Big steps have are already been made at the latest WRC-23, where the frequency bands 698 to 960 MHz, 1710 to 2170 MHz, and 2500 to 2690 MHz has been relaxed to allow for use in HAPS operating at 20 to 50 km altitude (i.e., the stratosphere).
Operating a stratospheric platform in European airspace involves obtaining certifications as well as permissions and (of course) complying with various regulations at both national and international levels. This includes the European Union Aviation Safety Agency (EASA) type certification and the national civil aviation authorities in Europe.
Leichtwerk AG, “High Altitude Platform Stations (HAPS) – A Future Key Element of Broadband Infrastructure” (2023). I recommend to closely follow Leichtwerk AG which is a world champion in making advanced gliding planes. The hydrogen powered StratoStreamer HAP is near-production ready, and they are currently working on a solar-powered platform. Germany is renowned for producing some of the best gliding planes in the world (after WWII Germany was banned from developing and producing aircrafts, military as well as civil. These restrictions was only relaxed in the 60s). Germany has a long and distinguished history in glider development, dating back to the early 20th century. German manufacturers like Schleicher, Schempp-Hirth, and DG Flugzeugbau are among the world’s leading producers of high-quality gliders. These companies are known for their innovative designs, advanced materials, and precision engineering, contributing to Germany’s reputation in this field.
ITU Publication, World Radiocommunications Conference 2023 (WRC-23), Provisional Final Acts, (December 2023). Note1: The International Telecommunication Union (ITU) divides the world into three regions for the management of radio frequency spectrum and satellite orbits: Region 1: includes Europe, Africa, the Middle East west of the Persian Gulf including Iraq, the former Soviet Union, and Mongolia, Region 2: covers the Americas, Greenland, and some of the eastern Pacific Islands, and Region 3: encompasses Asia (excl. the former Soviet Union), Australia, the southwest Pacific, and the Indian Ocean’s islands.
Geoff Huston, “Starlink Protocol Performance” (November 2023). Note 2: The recommendations, such as those designated with “ADD” (additional), are typically firm in the sense that they have been agreed upon by the conference participants. However, they are subject to ratification processes in individual countries. The national regulatory authorities in each member state need to implement these recommendations in accordance with their own legal and regulatory frameworks.
Lynk Global website: https://lynk.world/ (see also FCC Order and Authorization). It should be noted that Lynk can operate within 617 to 960 MHz (Space-to-Earth) and 663 to 915 MHz (Earth-to-Space). However, only outside the USA. Constellation Area: IoT / M2M, Satellite-to-Cellphone, Internet, Direct-to-Cell. 8 LEO satellites out of 10 planned.
Omnispace website: https://omnispace.com/Constellation Area: IoT / M2M, 5G. World’s first global 5G non terrestrial network. Initial support 3GPP-defined Narrow-Band IoT radio interface. Planned 200 LEO and <15 MEO satellites. So far only 2 satellites launched.
NewSpace Index: https://www.newspace.im/ I find this resource having excellent and up-to date information of commercial satellite constellations.
LEOLABS Space visualization – SpaceX Starlink mapping. (deselect “Debris”, “Beams”, and “Instruments”, and select “Follow Earth”). An alternative visualization service for Starlink & OneWeb satellites is the website Satellitemap.space (you might go to settings and turn on signal Intensity which will give you the satellite coverage hexagons).
European Union Aviation Safety Agency (EASA). Note that an EASA-type Type Certificate is a critical document in the world of aviation. This certificate is a seal of approval, indicating that a particular type of aircraft, engine, or aviation component meets all the established safety and environmental standards per EASA’s stringent regulations. When an aircraft, engine, or component is awarded an EASA Type Certificate, it signifies a thorough and rigorous evaluation process that it has undergone. This process assesses everything from design and manufacturing to performance and safety aspects. The issuance of the certificate confirms that the product is safe for use in civil aviation and complies with the necessary airworthiness requirements. These requirements are essential to ensure aircraft operating in civil airspace safety and reliability. Beyond the borders of the European Union, an EASA Type Certificate is also highly regarded globally. Many countries recognize or accept these certificates, which facilitate international trade in aviation products and contribute to the global standardization of aviation safety.
ACKNOWLEDGEMENT.
I greatly acknowledge my wife, Eva Varadi, for her support, patience, and understanding during the creative process of writing this article.
I also greatly appreciate my past collaboration and the many discussions on the topic of Stratospheric Drones in particular and advanced antenna designs and properties in general that I have had with Dr. Jaroslav Holis, Senior R&D Manager (Group Technology, Deutsche Telekom AG) over the last couple of years. When it comes to my early involvement in Stratospheric Drones activities with Group Technology Deutsche Telekom AG, I have to recognize my friend, mentor, and former boss, Dr. Bruno Jacobfeuerborn, former CTO Deutsche Telekom AG and Telekom Deutschland, for his passion and strong support for this activity since 2015. My friend and former colleague Rachid El Hattachi deserves the credit for “discovering” and believing in the opportunities that a cellular broadband-based stratospheric drone brings to the telecom industry.
Many thanks to CEO Dr. Reiner Kickert of Leichtwerk AG for providing some high resolution pictures of his beautiful StratoStreamer.
Thanks to my friend Amit Kerenfor suggesting a great quote that starts this article.
Any errors or unclarities are solely due to myself and not the collaborators and colleagues that have done their best to support this piece.
To my friend Rudolf van der Berg this story is not about how volumetric demand (bytes or bits) results in increased energy consumption (W·h). That notion is silly, as we both “violently” agree on ;-). I recommend that readers also check out Rudolf’s wonderful presentation, “Energy Consumption of the Internet (May 2023),” which he delivered at the RIPE86 student event this year in 2023.
Recently, I had the privilege to watch a presentation by a seasoned executive talk about what his telco company is doing for the environment regarding sustainability and CO2 reduction in general. I think the company is doing something innovative beyond compensating shortfalls with buying certificates and (mis)use of green energy resources.
They replace (reasonably) aggressively their copper infrastructure (country stat for 2022: ~90% of HH/~16% subscriptions) with green sustainable fiber (country stat for 2022: ~78%/~60%). This is an obvious strategy that results in a quantum leap in customer experience potential and helps reduce overall energy consumption resulting from operating the ancient copper network.
Missing a bit imo, was the consideration of and the opportunity to phase out the HFC network (country stat for 2022: ~70%/~60%) and reduce the current HFC+Fibre overbuild of 1.45 and, of course, reduce the energy consumption and operational costs (and complexity) of operating two fixed broadband technologies (3 if we include the copper). However, maybe understandably enough, substantial investments have been made in upgrading to Docsis 3.1. An investment that possibly still is somewhat removed from having been written off.
The “wtf-moment” (in an otherwise very pleasantly and agreeable session) came when the speaker alluded that as part of their sustainability and CO2 reduction strategy, the telco was busy migrating from 4G LTE to 5G with the reasoning that 5G is 90% more energy efficient compared to 4G.
Firstly, it is correct that 5G is (in apples-for-apples comparisons!) ca. 90% more efficient in delivering a single bit compared to 4G. The metric we use is Joules-per-bit or Watts-seconds-per-bit. It is also not uncommon at all to experience Telco executives hinting at the relative greenness of 5G (it is, in my opinion, decidedly not a green broadband communications technology … ).
Secondly, so what! Should we really care about relative energy consumption? After all, we pay for absolute energy consumption, not for whatever relativized measure of consumed energy.
I think I know the answer from the CFO and the in-the-know investors.
If the absolute energy consumption of 5G is higher than that of 4G, I will (most likely) have higher operational costs attributed to that increased power consumption with 5G. If I am not in an apples-for-apples situation, which rarely is the case, and I am anyway really not in, the 5G technology requires substantially more power to provide for new requirements and specifications. I will be worse off regarding the associated cost in absolute terms of money. Unless I also have a higher revenue associated with 5G, I am economically worse off than I was with the older technology.
Having higher information-related energy efficiency in cellular communications systems is a feature of the essential requirement of increasingly better spectral efficiency all else being equal. It does not guarantee that, in absolute monetary terms, a Telco will be better off … far from it!
THE ENERGY OF DELIVERING A BIT.
Energy, which I choose to represent in Joules, is equal to the Power (in Watt or W) that I need to consume per time-unit for a given output unit (e.g., a bit) times the unit of time (e.g., a second) it took to provide the unit.
Take a 4G LTE base station that consumes ca. 5.0kW to deliver a maximum throughput of 160 Mbps per sector (@ 80 MHz per sector). The information energy efficiency of the specific 4G LTE base station (e.g., W·s per bit) would be ca. 10 µJ/bit. The 4G LTE base station requires 10 micro (one millionth) Joules to deliver 1 bit (in 1 second).
In the 5G world, we would have a 5G SA base station, using the same frequency bands as 4G and with an additional 10 MHz @ 700MHz and 100 MHz @ 3.5 GHz included. The 3.5 GHz band is supported by an advanced antenna system (AAS) rather than a classical passive antenna system used for the other frequency bands. This configuration consumes 10 kW with ~40% attributed to the 3.5 GHz AAS, supporting ~1 Gbps per sector (@ 190 MHz per sector). This example’s 5G information energy efficiency would be ca. 0.3 µJ/bit.
In this non-apples-for-apples comparison, 5G is about 30 times more efficient in delivering a bit than 4G LTE (in the example above). Regarding what an operator actually pays for, 5G is twice as costly in energy consumption compared to 4G.
It should be noted that the power consumption is not driven by the volumetric demand but by the time that demand exists and the load per unit of time. Also, base stations will have a power consumption even when idle with the degree depending on the intelligence of the energy management system applied.
So, more formalistic, we have
E per bit = P (in W) · time (in sec) per bit, or in the basic units
J / bit = W·s / bit = W / (bit/s) = W / bps = W / [ MHz · Mbps/MHz/unit · unit-quantity ]
E per bit = P (in W) / [ Bandwidth (in MHz) · Spectral Efficiency (in Mbps/MHz/unit) · unit-quantity ]
It is important to remember that this is about the system spec information efficiency and that there is no direct relationship between the Power that you need and the outputted information your system will ultimately support bit-wise.
and
Thus, the relative efficiency between 4G and 5G is
Currently (i.e., 2023), the various components of the above are approximately within the following ranges.
The power consumption of a 5G RAT is higher than that of a 4G RAT. As we add higher frequency spectrum (e.g., C-band, 6GHz, 23GHz,…) to the 5G RAT, increasingly more spectral bandwidth (B) will be available compared to what was deployed for 4G. This will increase the bit-wise energy efficiency of 5G compared to 4G, although the power consumption is also expected to increase as higher frequencies are supported.
If the bandwidth and system power consumption is the same for both radio access technologies (RATs), then we have the relative information energy efficiency is
Depending on the relative difference in spectral efficiency. 5G is specified and designed to have at least ten times (10x) the spectral efficiency of 4G. If you do the math (assuming apples-to-apples applies), it is no surprise that 5G is specified to be 90% more efficient in delivering a bit (in a given unit of time) compared to 4G LTE.
And just to emphasize the obvious,
RAT refers to the radio access technology, BB is the baseband, freq the cellular frequencies, and idle to the situation where the system is not being utilized.
Volume in Bytes (or bits) does not directly relate to energy consumption. As frequency bands are added to a sector (of a base station), the overall power consumption will increase. Moreover, the more computing is required in the antenna, such as for advanced antenna systems, including massive MiMo antennas, the more power will be consumed in the base station. The more the frequency bands are being utilized in terms of time, the higher will the power consumption be.
Indirectly, as the cellular system is being used, customers consume bits and bytes (=8·bit) that will depend on the effective spectral efficiency (in bps/Hz), the amount of effective bandwidth (in Hz) experienced by the customers, e.g., many customers will be in a coverage situation where they may not benefit for example from higher frequency bands), and the effective time they make use of the cellular network resources. The observant reader will see that I like the term “effective.” The reason is that customers rarely enjoy the maximum possible spectral efficiency. Likely, not all the frequency spectrum covering customers is necessarily being applied to individual customers, depending on their coverage situation.
In the report “A Comparison of the Energy Consumption of Broadband Data Transfer Technologies (November 2021),” the authors show the energy and volumetric consumption of mobile networks in Finland over the period from 2010 to 2020. To be clear, I do not support the author’s assertion of causation between volumetric demand and energy consumption. As I have shown above, volumetric usage does not directly cause a given power consumption level. Over the 10-year period shown in the report, they observe a 70% increase in absolute power consumption (from 404 to 686 GWh, CAGR ~5.5%) and a factor of ~70 in traffic volume (~60 TB to ~4,000 TB, CAGR ~52%). Caution should be made in resisting the temptation to attribute the increase in energy over the period to be directly related to the data volume increase, however weak it is (i.e., note that the authors did not resist that temptation). Rudolf van der Berg has raised several issues with the approach of the above paper (as well as with many other related works) and indicated that the data and approach of the authors may not be reliable. Unfortunately, in this respect, it appears that systematic, reliable, and consistent data in the Telco industry is hard to come by (even if that data should be available to the individual telcos).
Technology change from 2G/3G to 4G, site densification, and more frequency bands can more than easily explain the increase in energy consumption (and all are far better explanations than data volume). It should be noted that there will also be reasons that decrease power consumption over time, such as more efficient electronics (e.g., via modernization), intelligent power management applications, and, last but not least, switching off of older radio access technologies.
The factors that drive a cell site’s absolute energy consumption is
Radio access technology with new technologies generally consumes more energy than older ones (even if the newer technologies have become increasingly more spectrally efficient).
The antenna type and configuration, including computing requirements for advanced signal processing and beamforming algorithms (that will improve the spectral efficiency at the expense of increased absolute energy consumption).
Equipment efficiency. In general, new generations of electronics and systems designs tend to be more energy-efficient for the same level of performance.
Intelligent energy management systems that allow for effective power management strategies will reduce energy consumption compared to what it would have been without such systems.
The network optimization goal policy. Is the cellular network planned and optimized for meeting the demands and needs of the customers (i.e., the economic design framework) or for providing the peak performance to as many customers as possible (i.e., the Umlaut/Ookla performance-driven framework)? The Umlaut/Ookla-optimized network, maxing out on base station configuration, will observe substantially higher energy consumption and associated costs.
The absolute cellular energy consumption has continued to rise as new radio access technologies (RAT) have been introduced irrespective of the leapfrog in those RATS spectral (bits per Hz) and information-related (Joules per bit) efficiencies.
WHY 5G IS NOT A GREEN TECHNOLOGY?
Let’s first re-acquaint ourselves with the 2015 vision of the 5G NGMN whitepaper;
“5G should support a 1,000 times traffic increase in the next ten years timeframe, with energy consumption by the whole network of only half that typically consumed by today’s networks. This leads to the requirement of an energy efficiency increase of x2000 in the next ten years timeframe.” (Section 4.2.2 Energy Efficiency, 5G White Paper by NGMN Alliance, February 2015).
The bold emphasis is my own and not in the paper itself. There is no doubt that the authors of the 5G vision paper had the ambition of making 5G a sustainable and greener cellular alternative than historically had been the case.
So, from the above statement, we have two performance figures that illustrate the ambition of 5G relative to 4G. Firstly, we have a requirement that the 5G energy efficiency should be 2000x higher than 4G (as it was back in the beginning of 2015).
or
if
Getting more spectrum bandwidth is relatively trivial as you go up in frequency and into, for example, the millimeter wave range (and beyond). However, getting 20+ GHz (e.g., 200+x100 MHz @ 4G) of additional practically usable spectrum bandwidth would be rather (=understatement) ambitious.
And that the absolute energy consumption of the whole 5G network should be half of what it was with 4G
If you think about this for a moment. Halfing the absolute energy consumption is an enormous challenge, even if it would have been with the same RAT. It requires innovation leapfrogs across the RAT electronic architecture, design, and material science underlying all of it. In other words, fundamental changes are required in the RF frontend (e.g., Power amplifiers, transceivers), baseband processing, DSP, DAC, ADC, cooling, control and management systems, algorithms, compute, etc…
But reality eats vision for breakfast … There really is no sign that the super-ambitious goal set by the NGMN Alliance in early 2015 is even remotely achievable even if we would give it another ten years (i.e., 2035). We are more than two orders of magnitude away from the visionary target of NGMN, and we are almost at the 10-year anniversary of the vision paper. We more or less get the benefit of the relative difference in spectral efficiency (x10), but no innovation beyond that has contributed very much to quantum leap cellular energy efficiency bit-wise.
I know many operators who will say that from a sustainability perspective, at least before the energy prices went through the roof, it really does not matter that 5G, in absolute terms, leads to substantial increases in energy consumption. They use green energy to supply the energy demand from 5G and pay off $CO_2$ deficits with certificates.
First of all, unless the increased cost can be recovered with the customers (e.g., price plan increase), it is a doubtful economic venue to pursue (and has a bit of a Titanic feel to it … going down together while the orchestra is playing).
Second, we should ask ourselves whether it is really okay for any industry to greedily consume sustainable and still relatively scarce green resources without being incentivized (or encouraged) to pursue alternatives and optimize across mobile and fixed broadband technologies. Particularly when fixed broadband technologies, such as fiber, are available, that would lead to a very sizable and substantial reduction in energy consumption … as customers increasingly adapt to fiber broadband.
Fiber is the greenest and most sustainable access technology we can deploy compared to cellular broadband technologies.
SO WHAT?
5G is a reality. Telcos are and will continue to invest substantially into 5G as they migrate their customers from 4G LTE to what ultimately will be 5G Standalone. The increase in customer experience and new capabilities or enablers are significant. By now, most Telcos will (i.e., 2023) have a very good idea of the operational expense associated with 5G (if not … you better do the math). Some will have been exploring investing in their own green power plants (e.g., solar, wind, hydrogen, etc.) to mitigate part of the energy surge arising from transitioning to 5G.
I suspect that as Telcos start reflecting on Open RAN as they pivot towards 6G (-> 2030+), above and beyond what 6G, as a RAT, may bring of additional operational expense pain, there will be new energy consumption and sustainability surprises to the cellular part of Telcos P&L. In general, breaking up an electronic system into individual (non-integrated) parts, as opposed to being integrated into a single unit, is likely to result in an increased power consumption. Some of the operational in-efficiencies that occur in breaking up a tightly integrated design can be mitigated by power management strategies. Though in order to get such power management strategies to work at the optimum may force a higher degree of supplier uniformity than the original intent of breaking up the tightly integrated system.
However, only Telcos that consider both their mobile and fixed broadband assets together, rather than two silos apart, will gain in value for customers and shareholders. Fixed-mobile (network) conversion should be taken seriously and may lead to very different considerations and strategies than 10+ years ago.
With increasing coverage of fiber and with Telcos stimulating aggressive uptake, it will allow those to redesign the mobile networks for what they were initially supposed to do … provide convenience and service where there is no fixed network present, such as when being mobile and in areas where the economics of a fixed broadband network makes it least likely to be available (e.g., rural areas) although LEO satellites (i.e., here today), maybe stratospheric drones (i.e., 2030+), may offer solid economic alternatives for those places. Interestingly, further simplifying the cellular networks supporting those areas today.
TAKE AWAY.
Volume in Bytes (or bits) does not directly relate to the energy consumption of the underlying communications networks that enable the usage.
The duration, the time scale, of the customer’s usage (i.e., the use of the network resources) does cause power consumption.
The bit-wise energy efficiency of 5G is superior to that of 4G LTE. It is designed that way via its spectral efficiency. Despite this, a 5G site configuration is likely to consume more energy than a 4G LTE site in the field and, thus, not a like-for-like in terms of number of bands and type of antennas deployed.
The absolute power consumption of a 5G configuration is a function of the number of bands deployed, the type of antennas deployed, intelligent energy management features, and the effective time 5G resources that customers have demanded.
Due to its optical foundation, Fiber is far more energy efficient in both bit-wise relative terms and absolute terms than any other legacy fixed (e.g., xDSL, HFC) or cellular broadband technology (e.g., 4G, 5G).
Looking forward and with the increasing challenges of remaining sustainable and contributing to CO2 reduction, it is paramount to consider an energy-optimized fixed and mobile converged network architecture as opposed to today’s approach of optimizing the fixed network separately from the cellular network. As a society, we should expect that the industry works hard to achieve an overall reduction in energy consumption, relaxing the demand on existing green energy infrastructures.
With 5G as of today, we are orders of magnitude from the original NGMN vision of energy consumption of only half of what was consumed by cellular networks ten years ago (i.e., 2014), requiring an overall energy efficiency increase of x2000.
Be aware that many Telcos and Infrastructure providers will use bit-wise energy efficiency when they report on energy consumption. They will generally report impressive gains over time in the energy that networks consume to deliver bits to their customers. This is the least one should expect.
Last but not least, the telco world is not static and is RAT-wise not very clean, as mobile networks will have several RATs deployed simultaneously (e.g., 2G, 4G, and 5G). As such, we rarely (if ever) have apples-to-apples comparisons on cellular energy consumption.
ACKNOWLEDGEMENT.
I greatly acknowledge my wife, Eva Varadi, for her support, patience, and understanding during the creative process of writing this article. I also greatly appreciate the discussion on this topic that I have had with Rudolf van der Berg over the last couple of years. I thank him for pointing out and reminding me (when I forget) of the shortfalls and poor quality of most of the academic work and lobbying activities done in this area.
PS
If you are aiming at a leapfrog in absolute energy reduction of your cellular network, above and beyond what you get with your infrastructure suppliers (e.g., Nokia, Ericsson, Huawei…), I really recommend you take a look at Opanga‘s machine learning-based Joule ML solution. The Joules ML has been proven to reduce RAN energy costs by 20% – 40% on top of what the RAT supplier’s (e.g., Ericsson, Nokia, Huawei, etc.) own energy management solutions may bring.
Disclosure: I am associated with Opanga and on their Industry Advisory Board.
Full disclosure … when I was first introduced to the concept of Network Slicing, from one of the 5G fathers that I respect immensely (Rachid, it must have been back at the end of 2014), I thought that it was one of the most useless concepts that I had heard of. I did simply not see (or get) the point of introducing this level of complexity. It did not feel right. My thoughts were that taking the slicing concept to the limit might actually not make any difference to not having it, except for a tremendous amount of orchestration and management overhead (and, of course, besides the technological fun of developing it and getting it to work).
It felt a bit (a lot, actually) as a “let’s do it because we can” thinking. With the “We can” rationale based on the maturity of cloudification and softwarization frameworks, such as cloud-native, public-cloud scale, cloud computing (e.g., edge), software-defined networks (SDN), network-function virtualization (NFV), and the-one-that-is-always-named Artificial Intelligence (AI). I believed there could be other ways to offer the same variety of service experiences without this additional (what I perceived as an unnecessary) complexity. At the time, I had reservations about its impact on network planning, operations, and network efficiency. Not at all sure, it would be a development in the right economic direction.
Since then, I have softened to the concept of Network Slicing. Not (of course) that I have much choice, as slicing is an integral part of 5G standalone (5G) implementation that will be implemented and launched over the next couple of years across our industry. Who knows, I may very likely be proven very wrong, and then I learn something.
What is a network slice? We can see a network slice as an on-user-demand logical separated network partitioning, software-defined on-top of our common physical network infrastructure (wam … what a mouthful … test me out on this one next time you see me), slicing through our network technology stack and its layers. Thinking of a virtual private network (VPN) tunnel through a transport network is a reasonably good analogy. The network slice’s logical partitioning is isolated from other traffic streams (and slices) flowing through the 5G network. Apart from the slice logical isolation, it can have many different customizations, e.g., throughput, latency, scale, Quality of Service, availability, redundancy, security, etc… The user equipment initiates the slice request from a list of pre-defined slice categories. Assuming the network is capable of supporting its requirements, the chosen slice category is then created, orchestrated, and managed through the underlying physical infrastructure that makes up the network stack. The pre-defined slice categories are designed to match what our industry believe is the most essential use-cases, e.g., (a) enhanced mobile broadband use cases (eMBB), (b) ultra-reliable low-latency communications (uRLLC) use cases, (c) massive machine-type communication (MMTC) use cases, (d) Vehicular-to-anything (V2X) use-cases, etc… While the initial (early day) applications of network slicing are expected to be fairly static and configurationally relatively simple, infrastructure suppliers (e.g., Ericsson, Huawei, Nokia, …)expect network slices to become increasingly dynamic and rich in their configuration possibilities. While slicing is typically evoked for B2B and B2B2X, there is not really a reason why consumers could not benefit from network slicing as well (e.g., gaming/VR/AR, consumer smart homes, consumer vehicular applications, etc..).
Show me the money!
Ericsson and Arthur D. Little (ADL) have recently investigated the network slicing opportunities for communications service providers (CSP). Ericsson and ADL have analyzed more than 70 external market reports on the global digitalization of industries and critically reviewed more than 400 5G / digital use cases (see references in Further Readings below). They conclude that the demand from digitalization cannot be served by CSPs without Network Slicing, e.g., “Current network resources cannot match the increasing diversity of demands over time” and “Use cases will not function” (in a conventional mobile network). Thus, according to Ericsson and ADL, the industry can not “live” without Network Slicing (I guess it is good that it comes with 5G SA then). In fact, from their study, they conclude that 30% of the 5G use cases explored would require network slicing (oh joy and good luck that it will be in our networks soon).
Ericsson and ADL find globally a network slicing business potential of 200 Billion US dollars by 2030 for CSPs. With a robust CAGR (i.e., the potential will keep growing) between 23% to 36% by 2030 (i.e., CAGR estimate for period 2025 to 2030). They find that 6 Industries segments take 90+% of the slicing potential; (1) Healthcare (23%), (2) Government (17%), (3) Transportation (15%), (4) Energy & Utilities (14%), (5) Manufacturing (12%) and (6) Media & Entertainment (11%). For the keen observer, we see that the verticals are making up for most of the slicing opportunities, with only a relatively small part being related to the consumers. It should, of course, be noted that not all CSPs are necessarily also mobile network operators (MNOs), and there are also outside the strict domain of MNOs revenue potential for non-MNO CSPs (I assume).
Let us compare this slicing opportunity to global mobile industry revenue projections from 2020 to 2030. GSMA has issued a forecast for mobile revenues until 2025, expecting a total turnover of 1,140 Billion US$ in 2025 at a CAGR (2020 – 2025) of 1.26%. Assuming this compounded annual growth rate would continue to apply, we would expect a global mobile industry revenue of 1,213 Bn US$ by 2030. Our 5G deployments will contribute in the order of 621 Bn US$ (or 51% of the total). The incremental total mobile revenue between 2020 and 2030 would be ca. 140 Bn US$ (i.e., 13% over period). If we say that roughly 20% is attributed to mobile B2B business globally, we have that by 2030 we would expect a B2B turnover of 240+ Bn US$ (an increase of ca. 30 Bn US$ over 2020). So, Ericsson & ADL’s 200 Bn US$ network slicing potential is then ca. 16% of the total 2030 global mobile industry turnover or 30+% of the 5G 2030 turnover. Of course, this assumes that somehow the slicing business potential is simply embedded in the existing mobile turnover or attributed to non-MNO CSPs (monetizing the capabilities of the MNO 5G SA slicing enablers).
Of course, the Ericsson-ADL potential could also be an actual new revenue stream untapped by today’s network infrastructures due to the lack of slicing capabilities that 5G SA will bring in the following years. If so, we can look forward to a boost of the total turnover of 16% over the GSMA-based 2030 projection. Given ca. 90% of the slicing potential is related to B2B business, it may imply that B2B mobile business would almost double due to network slicing opportunities (hmmm).
Another recent study assessed that the global 5G network slicing market will reach approximately 18 Bn US$ by 2030 with a CAGR of ca. 41% over 2020-2030.
Irrespective of the slicing turnover quantum, it is unlikely that the new capabilities of 5G SA (including network slicing and much richer granular quality of service framework) will lead to new business opportunities and enable unexplored use cases. That, in turn, may indeed lead to enhanced monetization opportunities and new revenue streams between now (2022) and 2030 for our industry.
Most Western European markets will see 5G SA being launched over the next 2 to 3 years; as 5G penetration rapidly approaches 50% penetration, I expect network slicing use cases being to be tried out with CSP/MNOs, industry partners, and governmental institutions soon after 5G SA has been launched. It should be pointed out that already for some years, slicing concepts have been trialed out in various settings. Both in 4G as well as 5G NSA networks.
Prologue to Network Slicing.
5G comes with a lot of fundamental capabilities as shown in the picture below,
5G allows for (1) enhanced mobile broadband, (2) very low latency, (3) massive increase in device density handling, i.e., massive device scale-up, (4) ultra-higher network reliability and service availability, and (5) enhanced security (not shown in the above diagram) compared to previous Gs.
The service (and thus network) requirement combinations are very high. The illustration below shows two examples of mapped-out sub-set of service (and therefore also eventually slice) requirements mapped onto the major 5G capabilities. In addition, it is quite likely that businesses would have additional requirements related to slicing performance monitoring, for example, in real-time across the network stack.
and with all the various industrial or vertical use cases (see below) one could imagine (noting that there may be many many more outside our imagination), the “fathers” of 5G became (very) concerned with how such business-critical services could be orchestrated and managed within a traditional mobile network architecture as well as across various public land mobile networks (PLMN). Much of this also comes out of the wish that 5G should “conquer” (take a slice of) next-generation industries (i.e., Industry 4.0), providing additional value above and beyond “the dumb bit pipe.” Moreover, I do believe that in parallel with the wish of becoming much more relevant to Industry 4.0 (and the next generation of verticals requirements), what also played a role in the conception of network slicing is the deeply rooted engineering concept of “control being better than trust” and that “centralized control is better than decentralized” (I lost count on this debate of centralized control vs. distributed management a long time ago).
So, yes … The 5G world is about to get a lot more complex in terms of Industrial use cases that 5G should support. And yes, our consumers will expect much higher download speeds, real-time (whatever that will mean) gaming capabilities, and “autonomous” driving …
“… it’s clear that the one shared public network cannot meet the needs of emerging and advanced mobile connectivity use cases, which have a diverse array of technical operations and security requirements.” (quote from Ericsson and Arthur D. Little study, 2021).
“The diversity of requirements will only grow more disparate between use cases — the one-size-fits-all approach to wireless connectivity will no longer suffice.” (quote from Ericsson and Arthur D. Little study, 2021).
Being a naturalist (yes, I like “naked” networks), it does seem somewhat odd (to me) to say that next generation (e.g., 5G) networks cannot support all the industrious use cases that we may throw at it in its native form. Particular after having invested billions in such networks. By partitioning a network up in limiting (logically isolated), slice instances can all be supported (allegedly). I am still in the thinking phase on that one (but I don’t think the math adds up).
Now, whether one agrees (entirely) with the economic sentiment expressed by Ericsson and ADL or not. We need a richer granular way of orchestrating and managing all those diverse use-cases we expect our 5G network to support.
Network Slicing.
So, we have (or will get) network slicing with our 5G SA Core deployment. As a reminder, when we talk about a network slice, we mean;
“An on-user-demandlogicalseparated network partitioning, software-defined, on-top of a common physical network infrastructure.”
So, the customer requested the network slice, typically via a predefined menu of slicing categories that may also have been pre-validated by the relevant network. Requested slices can also be Customized,by the requester, within the underlying 5G infrastructure capabilities and functionalities. If the network can provide the requested slicing requirements, the slice is (in theory) granted. The core network then orchestrates a logically separated network partitioning throughout the relevant infrastructure resources to comply with the requested requirements (e.g., speed, latency, device scale, coverage, security, etc…). The requested partitioning (i.e., the slice) is isolated from other slices to enable (at least on a logical level) independence of other live slices. Slice Isolation is an essential concept to network slicing. Slice Elasticity ensures that resources can be scaled up and down to ensure individual slice efficiency and an overall efficient operation of all operating slices. It is possible to have a single individual network slice or partition a slice into sub-slices with their individual requirements (that does not breach the overarching slice requirements). GSMA has issued roaming and inter-PLMN guidelines to ensure 5G network slicing inter-operability when a customer’s application finds itself outside its home -PLMN.
Today, and thanks to GSMA and ITU, there are some standard network slice services pre-defined, such as (a) eMBB – Enhanced Mobile Broadband, (b) mMTC – Massive machine-type communications, (c) URLLC – Ultra-reliable low-latency communications, (d) V2X – Vehicular-to-anything communications. These identified standard network slices are called Slice Service Types (SST). SSTs are not only limited to above mentioned 4 pre-defined slice service types. The SSTs are matched to what is called a Generic Slice Template (GST) that currently, we have 37 slicing attributes, allowing for quite a big span of combinations of requirements to be specified and validated against network capabilities and functionalities (maybe there is room for some AI/ML guidance here).
The user-requested network slice that has been set up end-2-end across the network stack, between the 5G Core and the user equipment, is called the network slice instance. The whole slice setup procedure is very well described in Chapter 12 of “5G NR and enhancements, from R15 to R16. The below illustration provides a high-level illustration of various network slices,
The 5G control function Access and Mobility management Function (AMF) is the focal point for the network slicing instances. This particular architectural choice does allow for other slicing control possibilities with a higher or lower degree of core network functionality sharing between slice instances. Again the technical details are explained well in some of the reading resources provided below. The takeaway from the above illustration is that the slice instance specifications are defined for each layer and respective physical infrastructure (e.g., routers, switches, gateways, transport device in general, etc…) of the network stack (e.g., Telco Core Cloud, Backbone, Edge Cloud, Fronthaul, New Radio, and its respective air-interface). Each telco stack layer that is part of a given network slice instance is supposed to adhere strictly to the slice requirements, enabling an End-2-End, from Core to New Radio through to the user equipment, slice of a given quality (e.g., speed, latency, jitter, security, availability, etc..).
And it may be good to keep in mind that although complex industrial use cases get a lot of attention, voice and mobile broadband could easily be set up with their own slice instances and respective quality-of-services.
Network slicing examples.
All the technical network slicing “stuff” is pretty much-taken care of by standardization and provided by the 5G infrastructure solution providers (e.g., Mavenir, Huawei, Ericsson, Nokia, etc..). Figuring the technical details of how these works require an engineering or technical background and a lot of reading.
As I see it, the challenge will be in figuring out, given a use-case, the slicing requirements and whether a single slice instance suffice or multiple are required to provide the appropriate operations and fulfillment. This, I expect, will be a challenge for both the mobile network operator as well as the business partner with the use case. This assumes that the economics will come out right for more complex (e.g., dynamic) and granular slice-instance use cases. For the operator as well as for businesses and public institutions.
The illustration below provides examples of a few (out of the 37) slicing attributes for different use cases, (a) Factories with time-critical, non-time-critical, and connected goods sub-use cases (e.g., sub-slice instances, QoS differentiated), (b) Automotive with autonomous, assisted and shared view sub-use cases, (c) Health use cases, and (d) Energy use cases.
One case that I have been studying is Networked Robotics use cases for the industrial segment. Think here about ad-hoc robotic swarms (for agricultural or security use cases) or industrial production or logistics sorting lines; below are some reflections around that.
End thoughts.
With the emergence of the 5G Core, we will also get the possibility to apply Network slicing to many diverse use cases. That there are interesting business opportunities with network slicing, I think, is clear. Whether it will add 16% to the global mobile topline by 2030, I don’t know and maybe also somewhat skeptical about (but hey, if it does … fantastic).
Today, the type of business opportunities that network slicing brings in the vertical segments is not a very big part of a mobile operator’s core competence. Mobile operators with 5G network slicing capabilities ultimately will need to build up such competence or (and!) team up with companies that have it.
That is, if the future use cases of network slicing, as envisioned by many suppliers, ultimately will get off the ground economically as well as operationally. I remain concerned that network slicing will not make operators’ operations less complex and thus will add cost (and possible failures) to their balance sheets. The “funny” thing (IMO) is that when our 5G networks are relatively unloaded, we would not have a problem delivering the use cases (obviously). Once our 5G networks are loaded, network slicing may not be the right remedy to manage traffic pressure situations or would make the quality we are providing to consumers progressively worse (and I am not sure that business and value-wise, this is a great thing to do). Of course, 6G may solve all those concerns 😉
Acknowledgement.
I greatly acknowledge my wife, Eva Varadi, for her support, patience, and understanding during the creative process of writing this Blog. Also, many of my Deutsche Telekom AG and Industry colleagues, in general, have in countless ways contributed to my thinking and ideas leading to this little Blog. Thank you!
Jia Shen, Zhongda Du, & Zhi Zhang, “5G NR and enhancements, from R15 to R16”, Elsevier Science, (2021). Provides a really good overview of what to expect from 5G standalone. Chapter 12 provides a good explanation of (and in detail account for) how 5G Network Slicing works in detail. Definitely one of my favorite books on 5G, it is not “just” an ANRA.
Claudia Campolo, Antonella Molinaro, Antonio Lera, and Francesco Menichella, “5G Network Slicing for Vehicle-to-Everything Services”, IEEE Wireless Communications 24, (December 2017). Great account of how network slicing should work for V2X services.
GSMA, “Securing the 5G Era” (2021). A good overview of security principles in 5G and how previous vulnerabilities in previous cellular generations are being addressed in 5G. This includes some explanation on why slicing further enhances security.
By the end of 2020, according with Ericsson, it was estimated that there where ca. 7.6 million 5G subscriptions in Western Europe (~ 1%). Compare this to North America’s ca. 14 million (~4%) and 190 million (~11%) North East Asia (e.g, China, South Korea, Japan, …).
Maybe Western Europe is not doing that great, when it comes to 5G penetration, in comparison with other big regional markets around the world. To some extend the reason may be that 4G network’s across most of Western Europe are performing very well and to an extend more than servicing consumers demand. For example, in The Netherlands, consumers on T-Mobile’s 4G gets, on average, a download speed of 100+ Mbps. About 5× the speed you on average would get in USA with 4G.
From the October 2021 statistics of the Global mobile Suppliers Association (GSA), 180 operators worldwide (across 72 countries) have already launched 5G. With 37% of those operators actively marketing 5G-based Fixed Wireless Access (FWA) to consumers and businesses. There are two main 5G deployment flavors; (a) non-standalone (NSA) deployment piggybacking on top of 4G. This is currently the most common deployment model, and (b) as standalone (SA) deployment, independently from legacy 4G. The 5G SA deployment model is to be expected to become the most common over the next couple of years. As of October 2021, 15 operators have launched 5G SA. It should be noted that, operators with 5G SA launched are also likely to support 5G in NSA mode as well, to provide 5G to all customers with a 5G capable handset (e.g., at the moment only 58% of commercial 5G devices supports 5G SA). Only reason for not supporting both NSA and SA would be for a greenfield operator or that the operator don’t have any 4G network (none of that type comes to my mind tbh). Another 25 operators globally are expected to be near launching standalone 5G.
It should be evident, also from the illustration below, that mobile customers globally got or will get a lot of additional download speed with the introduction of 5G. As operators introduce 5G, in their mobile networks, they will leapfrog their available capacity, speed and quality for their customers. For Europe in 2021 you would, with 5G, get an average downlink (DL) speed of 154 ± 90 Mbps compared to 2019 4G DL speed of 26 ± 8 Mbps. Thus, with 5G, in Europe, we have gained a whooping 6× in DL speed transitioning from 4G to 5G. In Asia Pacific, the quality gain is even more impressive with a 10× in DL speed and somewhat less in North America with 4× in DL speed. In general, for 5G speeds exceeding 200 Mbps on average may imply that operators have deployed 5G in the C-band band (e.g., with the C-band covering 3.3 to 5.0 GHz).
The above DL speed benchmark (by Opensignal) gives a good teaser for what to come and to expect from 5G download speed, once a 5G network is near you. There is of course much more to 5G than downlink (and uplink) speed. Some caution should be taken in the above comparison between 4G (2019) and 5G (2021) speed measurements. There are still a fair amount of networks around the world without 5G or only started upgrading their networks to 5G. I would expect the 5G average speed to reduce a bit and the speed variance to narrow as well (i.e., performance becoming more consistent).
In a previous blog I describe what to realistically expect from 5G and criticized some of the visionary aspects of the the original 5G white paper paper published back in February 2015. Of course, the tech-world doesn’t stand still and since the original 5G visionary paper by El Hattachi and Erfanian. 5G has become a lot more tangible as operators deploy it or is near deployment. More and more operators have launched 5G on-top of their 4G networks and in the configuration we define as non-standalone (i.e., 5G NSA). Within the next couple of years, coinciding with the access to higher frequencies (>2.1 GHz) with substantial (unused or underutilized) spectrum bandwidths of 50+ MHz, 5G standalone (SA) will be launched. Already today many high-end handsets support 5G SA ensuring a leapfrog in customer experience above and beyond shear mobile broadband speeds.
The below chart illustrates what to expect from 5G SA, what we already have in the “pocket” with 5G NSA, and how that may compare to existing 4G network capabilities.
There cannot be much doubt that with the introduction of the 5G Core (5GC) enabling 5G SA, we will enrich our capability and service-enabler landscape. Whether all of this cool new-ish “stuff” we get with 5G SA will make much top-line sense for operators and convenience for consumers at large is a different story for a near-future blog (so stay tuned). Also, there should not be too much doubt that 5G NSA already provide most of what the majority of our consumers are looking for (more speed).
Overall, 5G SA brings benefits, above and beyond NSA, on (a) round-trip delay (latency) which will be substantially lower in SA, as 5G does not piggyback on the slower 4G, enabling the low latency in ultra-reliable low latency communications (uRLLC), (b) a factor of 250× improvement device density (1 Million devices per km2) that can be handled supporting massive machine type communication scenarios (mMTC), (c) supports communications services at higher vehicular speeds, (d) in theory should result in low device power consumption than 5G NSA, and (e) enables new and possible less costly ways to achieve higher network (and connection) availability (e.g., with uRLLC).
Compared to 4G, 5G SA brings with it a more flexible, scalable and richer set of quality of service enablers. A 5G user equipment (UE) can have up to 1,024 so called QoS flows versus a 4G UE that can support up to 8 QoS classes (tied into the evolved packet core bearer). The advantage of moving to 5G SA is a significant reduction of QoS driven signaling load and management processing overhead, in comparison to what is the case in a 4G network. In 4G, it has been clear that the QoS enablers did not really match the requirements of many present day applications (i.e., brutal truth maybe is that the 4G QoS was outdated before it went live). This changes with the introduction of 5G SA.
So, when is it a good idea to implement 5G Standalone for mobile operators?
There are maybe three main events that should trigger operators to prepare for and launch 5G SA;
Economical demand for what 5G SA offers.
Critical mass of 5G consumers.
Want to claim being the first to offer 5G SA.
with the 3rd point being the least serious but certainly not an unlikely factor in deploying 5G SA. Apart from potentially enriching consumers experience, there are several operational advantages of transitioning to a 5GC, such as more mature IT-like cloudification of our telecommunications networks (i.e., going telco-cloud native) leading to (if designed properly) a higher degree of automation and autonomous network operations. Further, it may also allow the braver parts of telco-land to move a larger part of its network infrastructure capabilities into the public-cloud domain operated by hyperscalers or network-cloud consortia’s (if such entities will appear). Another element of the 5G SA cloud nativification (a new word?) that is frequently not well considered, is that it will allow operators to start out (very) small and scale up as business and consumer demand increases. I would expect that particular with hyperscalers and of course the-not-so-unusual-telco-supplier-suspects (e.g., Ericsson, Nokia, Huawei, Samsung, etc…), operators could launch fairly economical minimum viable products based on a minimum set of 5G SA capabilities sufficient to provide new and cost-efficient services. This will allow early entry for business-to-business new types of QoS and (or) slice-based services based on our new 5G SA capabilities.
Western Europe mobile market expectations – 5G technology share.
By end of 2021, it is expected that Western Europe would have in the order of 36 Million 5G connections, around a 5% 5G penetration. Increasing to 80 Million (11%) by end of 2022. By 2024 to 2025, it is expected that 50% of all mobile connections would be 5G based. As of October 2021 ca. 58% of commercial available mobile devices supports already 5G SA. This SA share is anticipated to grow rapidly over the next couple of years making 5G NSA increasingly unimportant.
Approaching 50% of all connections being 5G appears a very good time to aim having 5G standalone implemented and launched for operators. Also as this may coincide with substantial efforts to re-farming existing frequency spectrum from 4G to 5G as 5G data traffic exceeds that of 4G.
For Western Europe 2021, ca. 18% of the total mobile connections are business related. This number is expected to steadily increase to about 22% by 2030. With the introduction of new 5G SA capabilities, as briefly summarized above, it is to be expected that the 5G business connection share quickly will increase to the current level and that business would be able to directly monetize uRLLC, mMTC and the underlying QoS and network slicing enablers. For consumers 5G SA will bring some additional benefits but maybe less obvious new monetization possibilities, beyond the proportion of consumers caring about latency (e.g., gamers). Though, it appears likely that the new capabilities could bring operators efficiency opportunities leading to improved margin earned on consumers (for another article).
Recommendation:
Learn as much as possible from recent IT cloudification journeys (e.g., from monolithic to cloud, understand pros and cons with lift-and-shift strategies and the intricacies of operating cloud-native environments in public cloud domains).
Aim to have 5GC available for 5G SA launch latest by 2024.
Run 5GC minimum viable product poc’s with friendly (business) users prior to bigger launch.
As 5G is launched on C-band / 3.x GHz it may likewise be a good point in time to have 5G SA available. At least for B2B customers that may benefit from uRLLC, lower latency in general, mMTC, a much richer set of QoS, network slicing, etc…
Having a solid 4G to 5G spectrum re-farming strategy ready between now and 2024 (too late imo). This should map out 4G+NSA and SA supply dynamics as increasingly customers get 5G SA capabilities in their devices.
Western Europe mobile market expectations – traffic growth.
With the growth of 5G connections and the expectation that 5G would further boost the mobile data consumption, it is expected that by 2023 – 2024, 50% of all mobile data traffic in Western Europe would be attributed to 5G. This is particular driven by increased rollout of 3.x GHz across the Western European footprint and associated massive MiMo (mMiMo) antenna deployments with 32×32 seems to be the telco-lands choice. In blended mobile data consumption a CAGR of around 34% is expected between 2020 and 2030, with 2030 having about 26× more mobile data traffic than that of 2020. Though, I suspect that in Western Europe, aggressive fiberization of telecommunications consumer and business markets, over the same period, may ultimately slow the growth (and demand) on mobile networks.
A typical Western European operator would have between 80 – 100+ MHz of bandwidth available for 4G its downlink services. The bandwidth variation being determined by how much is required of residual 3G and 2G services and whether the operator have acquired 1500MHz SDL (supplementary downlink) spectrum. With an average 4G antenna configuration of 4×4 MiMo and effective spectral efficiency of 2.25 Mbps/MHz/sector one would expect an average 4G downlink speed of 300+ Mbps per sector (@ 90 MHz committed to 4G). For 5G SA scenario with 100 MHz of 3.x GHz and 2×10 MHz @ 700 MHz, we should expect an average downlink speed of 500+ Mbps per sector for a 32×32 massive MiMo deployment at same effective spectral efficiency as 4G. In this example, although naïve, quality of coverage is ignored. With 5G, we more than double the available throughput and capacity available to the operator. So the question is whether we remain naïve and don’t care too much about the coverage aspects of 3.x GHz, as beam-forming will save the day and all will remain cheesy for our customers (if something sounds too good to be true, it rarely is true).
In an urban environment it is anticipated that with beam-forming available in our mMiMo antenna solutions downlink coverage will be reasonably fine (i.e., on average) with 3.x GHz antennas over-layed on operators existing macro-cellular footprint with minor densification required (initially). In the situation that 3.x GHz uplink cannot reach the on-macro-site antenna, the uplink can be closed by 5G @ 700 MHz, or other lower cellular frequencies available to the operator and assigned to 5G (if in standalone mode). Some concerns have been expressed in literature that present advanced higher order antenna’s (e.g., 16×16 and above ) will on average provide a poorer average coverage quality over a macro cellular area than what consumers would be used to with lower order antennas (e.g., 4×4 or lower) and that the only practical (at least with today’s state of antennas) solution would be sectorization to make up for beam forming shortfalls. In rural and sub-urban areas advanced antennas would be more suitable although the demand would be a lot less than in a busy urban environment. Of course closing the 3.x GHz with existing rural macro-cellular footprint may be a bigger challenge than in an urban clutter. Thus, massive MiMo deployments in rural areas may be much less economical and business case friendly to deploy. As more and more operators deploy 3.x GHz higher-order mMiMo more field experience will become available. So stay tuned to this topic. Although I would reserve a lot more CapEx in my near-future budget plans for substantial more sectorization in urban clutter than what I am sure is currently in most operators plans. Maybe in rural and suburban areas the need for sectorizations would be much smaller but then densification may be needed in order to provide a decent 3.x GHz coverage in general.
Western Europe mobile market expectations – 5G RAN Capex.
That brings us to another important aspect of 5G deployment, the Radio Access Network (RAN) capital expenditures (CapEx). Using my own high-level (EU-based) forecast model based on technology deployment scenario per Western European country that in general considers 1 – 3% growth in new sites per anno until 2024, then from 2025 onwards, I assuming 2 – 5% growth due to densifications needs of 5G, driven by traffic growth and before mentioned coverage limitations of 3.x GHz. Exact timing and growth percentages depends on initial 5G commercial launch, timing of 3.x GHz deployment, traffic density (per site), and site density considering a country’s surface area.
According with Statista, Western Europe had in 2018 a cellular site base of 421 thousands. Further, Statista expected this base will grow with 2% per anno in the years after 2018. This gives an estimated number of cellular sites of 438k in 2020 that has been assumed as a starting point for 2020. The model estimates that by 2030, over the next 10 years, an additional 185k (+42%) sites will have been built in Western Europe to support 5G demand. 65% (120+k) of the site growth, over the next 10 years, will be in Germany, France, Italy, Spain and UK. All countries with relative larger geographical areas that are underserved with mobile broadband services today. Countries with incumbent mobile networks, originally based on 900 MHz GSM grids (of course densified since the good old GSM days), and thus having coarser cellular grids with higher degree of mismatching the higher 5G cellular frequencies (i.e., ≥ 2.5 GHz). In the model, I have not accounted for an increased demand of sectorizations to keep coverage quality upon higher order mMiMO deployments. This, may introduce some uncertainty in the Capex assessment. However, I anticipate that sectorization uncertainty may be covered in the accelerated site demand the last 5 years of the period.
In the illustration above, the RAN capital investment assumes all sites will eventually be fiberized by 2025. That may however be an optimistic assumption and for some countries, even in Western Europe, unrealistic and possibly highly uneconomical. New sites, in my model, are always fiberized (again possibly too optimistic). Miscellaneous (Misc.) accounts for any investments needed to support the RAN and Fiber investments (e.g., Core, Transport, Cap. Labor, etc..).
In the economical estimation price erosion has been taken into account. This erosion is a blended figure accounting for annual price reduction on equipment and increases in labor cost. I am assuming a 5-year replacement cycle with an associated 10% average price increase every 5 years (on the previous year’s eroded unit price). This accounts for higher capability equipment being deployed to support the increased traffic and service demand. The economical justification for the increase unit price being that otherwise even more new sites would be required than assumed in this model. In my RAN CapEx projection model, I am assuming rational deployment, that is demand driven deployment. Thus, operators investments are primarily demand driven, e.g., only deploying infrastructure required within a given financial recovery period (e.g., depreciation period). Thus, if an operator’s demand model indicate that it will need a given antenna configuration within the financial recovery period, it deploys that. Not a smaller configuration. Not a bigger configuration. Only the one required by demand within the financial recovery period. Of course, there may be operators with other deployment incentives than pure demand driven. Though on average I suspect this would have a neglectable effect on the scale of Western Europe (i.e., on average Western Europe Telco-land is assumed to be reasonable economically rational).
All in all, demand over the next 8 years leads to an 80+ Billion Euro RAN capital expenditure, required between 2022 and 2030. This, equivalent to a annual RAN investment level of a bit under 10 Billion Euro. The average RAN CapEx to Mobile Revenue over this period would be ca. 6.3%, which is not a shockingly high level (tbh), over a period that will see an intense rollout of 5G at increasingly higher frequencies and increasingly capable antenna configurations as demand picks up. Biggest threat to capital expenditures is poor demand models (or no demand models) and planning processes investing too much too early, ultimately resulting in buyers regret and cycled in-efficient investment levels over the next 10 years. And for the reader still awake and sharp, please do note that I have not mentioned the huge elephant in the room … The associated incremental operational expense (OpEx) that such investments will incur.
As mobile revenues are not expected to increase over the period 2022 to 2030, this leaves 5G investments main purpose to maintaining current business level dominated by consumer demand. I hope this scenario will not materialize. Given how much extra quality and service potential 5G will deliver over the next 10 years, it seems rather pessimistic to assume that our customers would not be willing to pay more for that service enhancement that 5G will brings with it. Alas, time will show.
Acknowledgement.
I greatly acknowledge my wife Eva Varadi for her support, patience and understanding during the creative process of writing this Blog. Petr Ledl, head of DTAG’s Research & Trials, and his team’s work has been a continuous inspiration to me (thank you so much for always picking up on that phone call Petr!). Also many of my Deutsche Telekom AG, T-Mobile NL & Industry colleagues in general have in countless of ways contributed to my thinking and ideas leading to this little Blog. Thank you!
Rachid El Hattachi & Javan Erfanian , “5G White Paper”, NGMN Alliance, (February 2015). See also “5G White Paper 2” by Nick Sampson (Orange), Javan Erfanian (Bell Canada) and Nan Hu (China Mobile).
Global Mobile Frequencies Database. (last update, 25 May 2021). I recommend very much to subscribe to this database (€595,. single user license). Provides a wealth of information on spectrum portfolios across the world.
Jia Shen, Zhongda Du, & Zhi Zhang, “5G NR and enhancements, from R15 to R16”, Elsevier Science, (2021). Provides a really good overview of what to expect from 5G standalone. Particular, very good comparison with what is provided with 4G and the differences with 5G (SA and NSA).
Ali Zaidi, Fredrik Athley, Jonas Medbo, Ulf Gustavsson, Giuseppe Durisi, & Xiaoming Chen, “5G Physical Layer Principles, Models and Technology Components”, Elsevier Science, (2018). The physical layer will always pose a performance limitation on a wireless network. Fundamentally, the amount of information that can be transferred between two locations will be limited by the availability of spectrum, the laws of electromagnetic propagation, and the principles of information theory. This book provides a good description of the 5G NR physical layer including its benefits and limitations. It provides a good foundation for modelling and simulation of 5G NR.
Thomas L. Marzetta, Erik G. Larsson, Hong Yang, Hien Quoc Ngo, “Fundamentals of Massive MIMO”, Cambridge University Press, (2016). Excellent account of the workings of advanced antenna systems such as massive MiMo.
Western Europe: Western Europe has a bit of a fluid definition (I have found), here Western Europe includes the following countries comprising a population of ca. 425 Million people (in 2021); Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland United Kingdom, Andorra, Cyprus, Faeroe Islands, Greenland, Guernsey, Jersey, Malta, Luxembourg, Monaco, Liechtenstein, San Marino, Gibraltar.