Posts Tagged LTE

SMS – Assimilation is inevitable, Resistance is Futile!

Short Message Service or SMS for short, one of the corner stones of mobile services, just turned 20 years old in 2012.

Talk about “Live Fast, Die Young” and the chances are that you are talking about SMS!

The demise of SMS has already been heralded … Mobile operators rightfully are shedding tears of the (taken-for-granted?) decline of the most profitable 140 Bytes there ever was and possible ever will be.

Before we completely kill off SMS, let’s have a brief look at

SMS2012

The average SMS user (across the world) consumed 136 SMS (ca. 19kByte) per month and paid 4.6 US$-cent per SMS and 2.6 US$ per month. Of course this is a worldwide average and should not be over interpreted. For example in the Philippines an average SMS user consumes 650+ SMS per month pays 0.258 US$-cent per SMS or 1.17 $ per month.The other extreme end of the SMS usage distribution we find in Cameroon with 4.6 SMS per month paying 8.19 US$-cent per SMS.

We have all seen the headlines throughout 2012 (and better part of 2011) of SMS Dying, SMS Disaster, SMS usage dropping and revenues being annihilated by OTT applications offering messaging for free, etcetcetc… & blablabla … “Mobile Operators almost clueless and definitely blameless of the SMS challenges” … Right? … hmmmm maybe not so fast!

All major market regions (i.e., WEU, CEE, NA, MEA, APAC, LA) have experienced a substantial slow down of SMS revenues in 2011 and 2012. A trend that is expected to continue and accelerate with mobile operators push for mobile broadband. Last but not least SMS volumes have slowed down as well (though less severe than the revenue slow down) as signalling-based short messaging service assimilates to IP-based messaging via mobile applications.

Irrespective of all the drama! SMS phase-out is obvious (and has been for many years) … with the introduction of LTE, SMS will be retired.

Resistance is (as the Borg’s would say) Futile!

It should be clear that the phase out of SMS does Absolutely Not mean that messaging is dead or in decline. Far far from it!

Messaging is Stronger than Ever and just got so many more communication channels beyond the signalling network of our legacy 2G & 3G networks.

Its however important to understand how long the assimilation of SMS will take and what drivers impact the speed of the SMS assimilation. From an operator strategic perspective such considerations will provide insights into how quickly they will need to replace SMS Legacy Revenues with proportional Data Revenues or suffer increasingly on both Top and Bottom line.

SMS2012 AND ITS GROWTH DYNAMICS

So lets just have a look at the numbers (with the cautionary note that some care needs to be taken with exchange rate effects between US Dollar and Local Currencies across the various markets being wrapped up in a regional and a world view. Further, due to the structure of bundling propositions, product-based revenues such as SMS Revenues, can be and often are somewhat uncertain depending on the sophistication of a given market):

2012 is expected worldwide to deliver more than 100 billion US Dollars in SMS revenues on more than 7 trillion revenue generating SMS.

The 100 Billion US Dollars is ca. 10% of total worldwide mobile turnover. This is not much different from the 3 years prior and 1+ percentage-point up compared to 2008. Data revenues excluding SMS is expected in 2012 to be beyond 350 Billion US Dollar or 3.5 times that of SMS Revenues or 30+% of total worldwide mobile turnover (5 years ago this was 20% and ca. 2+ times SMS Revenues).

SMS growth has slowed down over the last 5 years. Last 5 years SMS revenues CAGR was ca. 7% (worldwide). Between 2011 and 2012 SMS revenue growth is expected to be no more than 3%. Western Europe and Central Eastern Europe are both expected to generate less SMS revenues in 2012 than in 2011. SMS Volume grew with more than 20% per annum the last 5 years but generated SMS in 2012 is not expected to more than 10% higher than 2012.

For the ones who like to compare SMS to Data Consumption (and please safe us from ludicrous claims of the benefits of satellites and other ideas out of too many visits to Dutch Coffee shops)

2012 SMS Volume corresponds to 2.7 Terra Byte of daily data (not a lot! Really it is not!)

Don’t be terrible exited about this number! It is like Nano-Dust compared to the total mobile data volume generated worldwide.

The monthly Byte equivalent of SMS consumption is no more than 20 kilo Byte per individual mobile user in Western Europe.

Let us have a look at how this distributes across the world broken down in Western Europe (WEU), Central Eastern Europe (CEE), North America (NA), Asia Pacific (APAC), Latin America (LA) and Middle East & Africa (MEA):

sms_revenues_2012 sms_volume_2012

From the above chart we see that

Western Europe takes almost 30% of total worldwide SMS revenues but its share of total SMS generated is less than 10%.

And to some extend also explains why Western Europe might be more exposed to SMS phase out than some other markets. We have already seen the evidence of Western Europe sensitivity to SMS revenues back in 2011, a trend that will spread in many more markets in 2012 and lead to an overall negative SMS revenue story of Western Europe in 2012. We will see that within some of the other regions there are countries that substantially more exposed to SMS phase-out than others in terms of SMS share of total mobile turnover.

sms_pricing sms_per_individual

In Western Europe a consumer would  for an SMS pay more than 7 times the price compared to a consumer in North America (i.e., Canada or USA). It is quiet clear that Western Europe has been very successful in charging for SMS compared to any other market in the World. An consumers have gladly paid the price (well I assume so;-).

SMS Revenues in Western Europe are proportionally much more important in Western Europe than in other regions (maybe with the exception of Latin America).

In 2012 17% of Total Western Europe Mobile Turnover is expected to come from SMS Revenues (was ca. 13% in 2008).

WHAT DRIVES SMS GROWTH?

It is interesting to ask what drives SMS behaviour across various markets and countries.

Prior to reasonable good quality 3G networks and as importantly prior to the emergence of the Smartphone the SMS usage dynamics between different markets could easily be explained by relative few drivers, such as

(1) Price decline year on year (the higher decline the faster does SMS per user grow, though rate and impact will depend on Smartphone penetration & 3G quality of coverage).

(2) Price of an SMS relative to the price of a Minute (the lower the more SMS per User, in many countries there is a clear arbitrage in sending an SMS versus making a call which on average last between 60 – 120 seconds).

(3) Prepaid to Contract ratios (higher prepaid ratios tend to result in fewer SMS, though this relationship is not per se very strong).

(4) SMS ARPU to GDP (or average income if available) (The lower the higher higher the usage tend to be).

(5) 2G penetration/adaptation and

(6) literacy ratios (particular important in emerging markets. the lower the literacy rate is the lower the amount of SMS per user tend to be).

Finer detailed models can be build with many more parameters. However, the 6 given here will provide a very decent worldview of SMS dynamics (i.e., amount and growth) across countries and cultures. So for mature markets we really talk about a time before 2009 – 2010 where Smartphone penetration started to approach or exceed 20% – 30% (beyond which the model becomes a bit more complex).

In markets where the Smartphone penetration is beyond 30% and 3G networks has reached a certain coverage quality level the models describing SMS usage and growth changes to include Smartphone Penetration and to a lesser degree 3G Uptake (not Smartphone penetration and 3G uptake are not independent parameters and as such one or the other often suffice from a modelling perspective).

Looking SMS usage and growth dynamics after 2008, I have found high quality statistical and descriptive models for SMS growth using the following parameters;

(a) SMS Price Decline.

(b) SMS price to MoU Price.

(c) Prepaid percentage.

(d) Smartphone penetration (Smartphone penetration has a negative impact on SMS growth and usage – unsurprisingly!)

(e) SMS ARPU to GDP

(f) 3G penetration/uptake (Higher the 3G penetration combined with very good coverage has a negative impact on SMS growth and usage. Less important though than Smartphone penetration).

It should be noted that each of these parameters are varying with time and there for in extracting those from a comprehensive dataset time variation should be considered in order to produce a high quality descriptive model for SMS usage and growth.

If a Market and its Mobile Operators would like to protect their SMS revenues or at least slow down the assimilation of SMS, the mobile operators clearly need to understand whether pushing Smartphones and Mobile Data can make up for the decline in SMS revenues that is bound to happen with the hard push of mobile broadband devices and services.

EXPOSURE TO LOSS OF SMS REVENUE – A MARKET BY MARKET VIEW!

As we have already seen and discussed it is not surprising that SMS is declining or stagnating. At least within its present form and business model. Mobile Broadband, the Smartphone and its many applications have created a multi-verse of alternatives to the SMS. Where in the past SMS was a clear convenience and often a much cheaper alternative to an equivalent voice call, today SMS has become in-convenient and not per se a cost-efficient alternative to Voice and certainly not when compared with IP-based messaging via a given data plan.

exposure_to_SMS_decline

74 countries (or markets) have been analysed for their exposure to SMS decline in terms of the share of SMS Revenues out of the Total Mobile Turnover. 4 categories have been identified (1) Very high risk >20%, (2) High risk for 10% – 20%, (3) Medium risk for 5% – 10% and (4) Lower risk when the SMS Revenues are below 5% of total mobile turnover.

As Mobile operators push hard for mobile broadband and inevitably increases rapidly the Smartphone penetration, SMS will decline. In the “end-game” of LTE, SMS has been altogether phased out.

Based on 2012 expectations lets look at the risk exposure that SMS phase-out brings in a market by market out-look;

We see from the above analysis that 9 markets (out of a total 74 analyzed), with Philippines taking the pole position, are having what could be characterized as a very high exposure to SMS Decline. The UK market, with more than 30% of revenues tied up in SMS, have aggressively pushed for mobile broadband and LTE. It will be very interesting to follow how UK operators will mitigate the exposure to SMS decline as LTE is penetrating the market.  We will see whether LTE (and other mobile broadband propositions) can make up for the SMS decline.

More than 40 markets have an SMS revenue dependency of more than 10% of total mobile turnover and thus do have a substantial exposure to SMS decline that needs to be mitigated by changes to the messaging business model.

Mobile operators around the world still need to crack this SMS assimilation challenge … a good starting point would be to stop blaming OTT for all the evils and instead either manage their mobile broadband push and/or start changing their SMS business model to an IP-messaging business model.

IS THERE A MARGIN EXPOSURE BEYOND LOSS OF SMS REVENUES?

There is no doubt that SMS is a high-margin service, if not the highest, for The Mobile Industry.

A small de-tour into the price for SMS and the comparison with the price of mobile data!

The Basic: an SMS is 140 Bytes and max 160 characters.

On average (worldwide) an SMS user pays (i.e., in 2012) ca. 4.615 US$-cent per short message.

A Mega-Byte of data is equivalent to 7,490 SMSs which would have a “value” of ca. 345 US Dollars.

Expensive?

Yes! It would be if that was the price a user would pay for mobile broadband data (particular for average consumptions of 100 Mega Bytes per month of Smartphone consumption) …

However, remember that an average user (worldwide) consumes no more than 20 kilo Byte per Month.

One Mega-Byte of SMS would supposedly last for more than 50 month or more than 4 years.

This is just to illustrate the silliness of getting into SMS value comparison with mobile data.

A Byte is not just a Byte but depends what that Byte caries!

Its quiet clear that an SMS equivalent IP-based messaging does not pose much of a challenge to a mobile broadband network being it either HSPA-based or LTE-based. To some extend IP-based messaging (as long as its equivalent to 140 Bytes) should be able to be delivered at better or similar margin as in a legacy based 2G mobile network.

Thus, in my opinion a 140 Byte message should not cost more to deliver in an LTE or HSPA based network. In fact due to better spectral efficiency and at equivalent service levels, the cost of delivering 140 Bytes in LTE or HSPA should be a lot less than in GSM (or CS-3G).

However, if the mobile operators are not able to adapt their messaging business models to recover the SMS revenues (which with the margin argument above might not be $ to $ recovery but could be less) at risk of being lost to the assimilation process of pushing mobile data … well then substantial margin decline will be experienced.

Operators in the danger zone of SMS revenue exposure, and thus with the SMS revenue share exceeding 10% of the total mobile turnover, should urgently start strategizing on how they can control the SMS assimilation process without substantial financial loss to their operations.

ACKNOWLEDGEMENT

I have made extensive use of historical and actual data from Pyramid Research country data bases. Wherever possible this data has been cross checked with other sources. Pyramid Research have some of the best and most detailed mobile technology projections that would satisfy most data savvy analysts. The very extensive data analysis on Pyramid Research data sets are my own and any short falls in the analysis clearly should only be attributed to myself.

, , , , , , , , ,

5 Comments

The Economics of the Thousand Times Challenge: Spectrum, Efficiency and Small Cells

By now the biggest challenge of the “1,000x challenge” is to read yet another story about the “1,000x challenge”.

This said, Qualcomm has made many beautiful presentations on The Challenge. It leaves the reader with an impression that it is much less of a real challenge, as there is a solution for everything and then some.

So bear with me while we take a look at the Economics and in particular the Economical Boundaries around the Thousand Times “Challenge” of providing (1) More spectrum, (2) Better efficiency and last but not least (3) Many more Small Cells.

THE MISSING LINK

While (almost) every technical challenge is solvable by clever engineering (i.e., something Qualcomm obviously have in abundance), it is not following naturally that such solutions are also feasible within the economical framework imposed by real world economics. At the very least, any technical solution should also be reasonable within the world of economics (and of course within a practical time-frame) or it becomes a clever solution but irrelevant to a real world business.

A  Business will (maybe should is more in line with reality) care about customer happiness. However a business needs to do that within healthy financial boundaries of margin, cash and shareholder value. Not only should the customer be happy, but the happiness should extend to investors and shareholders that have trusted the Business with their livelihood.

While technically, and almost mathematically, it follows that massive network densification would be required in the next 10 years IF WE KEEP FEEDING CUSTOMER DEMAND it might not be very economical to do so or at the very least such densification only make sense within a reasonable financial envelope.

Its obvious that massive network densification, by means of macro-cellular expansion, is unrealistic, impractically as well as uneconomically. Thus Small Cell concepts including WiFi has been brought to the Telecoms Scene as an alternative and credible solution. While Small Cells are much more practical, the question whether they addresses sufficiently the economical boundaries, the Telecommunications Industry is facing, remains pretty much unanswered.

PRE-AMP

The Thousand Times Challenge, as it has been PR’ed by Qualcomm, states that the cellular capacity required in 2020 will be at least 1,000 times that of “today”. Actually, the 1,000 times challenge is referenced to the cellular demand & supply in 2010, so doing the math

the 1,000x might “only” be a 100 times challenge between now and 2020 in the world of Qualcomm’s and alike. Not that it matters! … We still talk about the same demand, just referenced to a later (and maybe less “sexy” year).

In my previous Blogs, I have accounted for the dubious affair (and non-nonsensical discussion) of over-emphasizing cellular data growth rates (see “The Thousand Times Challenge: The answer to everything about mobile data”) as well as the much more intelligent discussion about how the Mobile Industry provides for more cellular data capacity starting with the existing mobile networks (see “The Thousand Time Challenge: How to provide cellular data capacity?”).

As it turns out  Cellular Network Capacity C can be described by 3 major components; (1) available bandwidth B, (2) (effective) spectral efficiency E and (3) number of cells deployed N.

The SUPPLIED NETWORK CAPACITY in Mbps (i.e., C) is equal to  the AMOUNT OF SPECTRUM, i.e., available bandwidth, in MHz (i..e, B) multiplied with the SPECTRAL EFFICIENCY PER CELL in Mbps/MHz (i.e., E) multiplied by the NUMBER OF CELLS (i.e., N). For more details on how and when to apply the Cellular Network Capacity Equation read my previous Blog on “How to provide Cellular Data Capacity?”).

SK Telekom (SK Telekom’s presentation at the 3GPP workshop on “Future Radio in 3GPP” is worth a careful study) , Mallinson (@WiseHarbor) and Qualcomm (@Qualcomm_tech, and many others as of late) have used the above capacity equation to impose a Target amount of cellular network capacity a mobile network should be able to supply by 2020: Realistic or Not, this target comes to a 1,000 times the supplied capacity level in 2010 (i.e., I assume that 2010 – 2020 sounds nicer than 2012 – 2022 … although the later would have been a lot more logical to aim for if one really would like to look at 10 years … of course that might not give 1,000 times which might ruin the marketing message?).

So we have the following 2020 Cellular Network Capacity Challenge:

Thus a cellular network in 2020 should have 3 times more spectral bandwidth B available (that’s fairly easy!), 6 times higher spectral efficiency E (so so … but not impossible, particular compared with 2010) and 56 times higher cell site density N (this one might  be a “real killer challenge” in more than one way), compared to 2010!.

Personally I would not get too hanged up about whether its 3 x 6 x 56 or 6 x 3 x 56 or some other “multiplicators” resulting in a 1,000 times gain (though some combinations might be a lot more feasible than others!)

Obviously we do NOT need a lot of insights to see that the 1,000x challenge is a

Rally call for Small & then Smaller Cell Deployment!

Also we do not need to be particular visionary (or have visited a Dutch Coffee Shop) to predict that by 2020 (aka The Future) compared to today (i.e., October 2012)?

Data demand from mobile devices will be a lot higher in 2020!

Cellular Networks have to (and will!) supply a lot more data capacity in 2020!

Footnote: the observant reader will have seen that I am not making the claim that there will be hugely more data traffic on the cellular network in comparison to today. The WiFi path might (and most likely will) take a lot of the traffic growth away from the cellular network.

BUT

how economical will this journey be for the Mobile Network Operator?

THE ECONOMICS OF THE THOUSAND TIMES CHALLENGE

Mobile Network Operators (MNOs) will not have the luxury of getting the Cellular Data Supply and Demand Equation Wrong.

The MNO will need to balance network investments with pricing strategies, churn & customer experience management as well as overall profitability and corporate financial well being:

Growth, if not manage, will lead to capacity & cash crunch and destruction of share holder value!

So for the Thousand Times Challenge, we need to look at the Total Cost of Ownership (TCO) or Total Investment required to get to a cellular network with 1,000 times more network capacity than today. We need to look at:

Investment I(B) in additional bandwidth B, which would include (a) the price of spectral re-farming (i.e., re-purposing legacy spectrum to a new and more efficient technology), (b) technology migration (e.g., moving customers off 2G and onto 3G or LTE or both) and (c) possible acquisition of new spectrum (i..e, via auction, beauty contests, or M&As).

Improving a cellular networks spectral efficiency I(E) is also likely to result in additional investments. In order to get an improved effective spectral efficiency, an operator would be required to (a) modernize its infrastructure, (b) invest into better antenna technologies, and (c) ensure that customer migration from older spectral in-efficient technologies into more spectral efficient technologies occurs at an appropriate pace.

Last but NOT Least the investment in cell density I(N):

Needing 56 times additional cell density is most likely NOT going to be FREE,

even with clever small cell deployment strategies.

Though I am pretty sure that some will make a very positive business case, out there in the Operator space, (note: the difference between Pest & Cholera might come out in favor of Cholera … though we would rather avoid both of them) comparing a macro-cellular expansion to Small Cell deployment, avoiding massive churn in case of outrageous cell congestion, rather than focusing on managing growth before such an event would occur.

The Real “1,000x” Challenge will be Economical in nature and will relate to the following considerations:

tco 2020

In other words:

Mobile Networks required to supply a 1,000 times present day cellular capacity are also required to provide that capacity gain at substantially less ABSOLUTE Total Cost of Ownership.

I emphasize the ABSOLUTE aspects of the Total Cost of Ownership (TCO), as I have too many times seen our Mobile Industry providing financial benefits in relative terms (i.e., relative to a given quality improvement) and then fail to mention that in absolute cost the industry will incur increased Opex (compared to pre-improvement situation). Thus a margin decline (i.e., unless proportional revenue is gained … and how likely is that?) as well as negative cash impact due to increased investments to gain the improvements (i.e., again assuming that proportional revenue gain remains wishful thinking).

Never Trust relative financial improvements! Absolutes don’t Lie!

THE ECONOMICS OF SPECTRUM.

Spectrum economics can be captured by three major themes: (A) ACQUISITION, (B) RETENTION and (C) PERFECTION. These 3 major themes should be well considered in any credible business plan: Short, Medium and Long-term.

It is fairly clear that there will not be a lot new lower frequency (defined here as <2.5GHz) spectrum available in the next 10+ years (unless we get a real breakthrough in white-space). The biggest relative increase in cellular bandwidth dedicated to mobile data services will come from re-purposing (i.e., perfecting) existing legacy spectrum (i.e., by re-farming). Acquisition of some new bandwidth in the low frequency range (<800MHz), which per definition will not be a lot of bandwidth and will take time to become available. There are opportunities in the very high frequency range (>3GHz) which contains a lot of bandwidth. However this is only interesting for Small Cell and Femto Cell like deployments (feeding frenzy for small cells!).

As many European Countries re-auction existing legacy spectrum after the set expiration period (typical 10 -15 years), it is paramount for a mobile operator to retain as much as possible of its existing legacy spectrum. Not only is current traffic tied up in the legacy bands, but future growth of mobile data will critical depend on its availability. Retention of existing spectrum position should be a very important element of an Operators  business plan and strategy.

Most real-world mobile network operators that I have looked at can expect by acquisition & perfection to gain between 3 to 8 times spectral bandwidth for cellular data compared to today’s situation.

For example, a typical Western European MNO have

  1. Max. 2x10MHz @ 900MHz primarily used for GSM. Though some operators are having UMTS 900 in operation or plans to re-farm to UMTS pending regulatory approval.
  2. 2×20 MHz @ 1800MHz, though here the variation tend to be fairly large in the MNO spectrum landscape, i.e., between 2x30MHz down-to 2x5MHz. Today this is exclusively in use for GSM. This is going to be a key LTE band in Europe and already supported in iPhone 5 for LTE.
  3. 2×10 – 15 MHz @ 2100MHz is the main 3G-band (UMTS/HSPA+) in Europe and is expected to remain so for at least the next 10 years.
  4. 2×10 @ 800 MHz per operator and typically distributed across 3 operator and dedicated to LTE. In countries with more than 3 operators typically some MNOs will have no position in this band.
  5. 40 MHz @ 2.6 GHz per operator and dedicated to LTE (FDD and/or TDD). From a coverage perspective this spectrum would in general be earmarked for capacity enhancements rather than coverage.

Note that most European mobile operators did not have 800MHz and/or 2.6GHz in their spectrum portfolios prior to 2011. The above list has been visualized in the Figure below (though only for FDD and showing the single side of the frequency duplex).

spectrum_details

The 700MHz will eventually become available in Europe (already in use for LTE in USA via AT&T and VRZ) for LTE advanced. Though the time frame for 700MHz cellular deployment in Europe is still expected take maybe up to 8 years (or more) to get it fully cleared and perfected.

Today (as of 2012) a typical European MNO would have approximately (a) 60 MHz (i.e., DL+UL) for GSM, (b) 20 – 30 MHz for UMTS and (c) between 40MHz – 60MHz for LTE (note that in 2010 this would have been 0MHz for most operators!). By 2020 it would be fair to assume that same MNO could have (d) 40 – 50 MHz for UMTS/HSPA+ and (e) 80MHz – 100MHz for LTE. Of course it is likely that mobile operators still would have a thin GSM layer to support roaming traffic and extreme laggards (this is however likely to be a shared resource among several operators). If by 2020 10MHz to 20MHz would be required to support voice capacity, then the MNO would have at least 100MHz and up-to 130MHz for data.

Note if we Fast-Backward to 2010, assume that no 2.6GHz or 800MHz auction had happened and that only 2×10 – 15 MHz @ 2.1GHz provided for cellular data capacity, then we easily get a factor 3 to 5 boost in spectral capacity for data over the period. This just to illustrate the meaningless of relativizing the challenge of providing network capacity.

So what’s the economical aspects of spectrum? Well show me the money!

Spectrum:

  1. needs to be Acquired (including re-acquired = Retention) via (a) Auction, (b) Beauty contest or (c) Private transaction if allowed by the regulatory authorities (i.e., spectrum trading); Usually spectrum (in Europe at least) will be time-limited right-to-use! (e.g., 10 – 15 years) => Capital investments to (re)purchase spectrum.
  2. might need to be Perfected & Re-farmed to another more spectral efficient technology => new infrastructure investments & customer migration cost (incl. acquisition, retention & churn).
  3. new deployment with coverage & service obligations => new capital investments and associated operational cost.
  4. demand could result in joint ventures or mergers to acquire sufficient spectrum for growth.
  5. often has a re-occurring usage fee associate with its deployment => Operational expense burden.

First 3 bullet points can be attributed mainly to Capital expenditures and point 5. would typically be an Operational expense. As we have seen in US with the failed AT&T – T-Mobile US merger, bullet point 4. can result in very high cost of spectrum acquisition. Though usually a merger brings with it many beneficial synergies, other than spectrum, that justifies such a merger.

spectrum_cost

Above Figure provides a historical view on spectrum pricing in US$ per MHz-pop. As we can see, not all spectrum have been borne equal and depending on timing of acquisition, premium might have been paid for some spectrum (e.g., Western European UMTS hyper pricing of 2000 – 2001).

Some general spectrum acquisition heuristics can be derived by above historical overview (see my presentation “Techno-Economical Aspects of Mobile Broadband from 800MHz to 2.6GHz” on @slideshare for more in depth analysis).

spectrum_heuristics

Most of the operator cost associated with Spectrum Acquisition, Spectrum Retention and Spectrum Perfection should be more or less included in a Mobile Network Operators Business Plans. Though the demand for more spectrum can be accelerated (1) in highly competitive markets, (2) spectrum starved operations, and/or (3) if customer demand is being poorly managed within the spectral resources available to the MNO.

WiFi, or in general any open radio-access technology operating in ISM bands (i.e., freely available frequency bands such as 2.4GHz, 5.8GHz), can be a source of mitigating costly controlled-spectrum resources by stimulating higher usage of such open-technologies and open-bands.

The cash prevention or cash optimization from open-access technologies and frequency bands should not be under-estimated or forgotten. Even if such open-access deployment models does not make standalone economical sense, is likely to make good sense to use as an integral part for the Next Generation Mobile Data Network perfecting & optimizing open- & controlled radio-access technologies.

The Economics of Spectrum Acquisition, Spectrum Retention & Spectrum Perfection is of such tremendous benefits that it should be on any Operators business plans: short, medium and long-term.

THE ECONOMICS OF SPECTRAL EFFICIENCY

The relative gain in spectral efficiency (as well as other radio performance metrics) with new 3GPP releases has been amazing between R99 and recent HSDPA releases. Lots of progress have been booked on the account of increased receiver and antenna sophistication.

spectral_efficiency_gain_per_technology

If we compare HSDPA 3.6Mbps (see above Figure) with the first Release of LTE, the spectral efficiency has been improved with a factor 4. Combined with more available bandwidth for LTE, provides an even larger relative boost of supplied bandwidth for increased capacity and customer quality. Do note above relative representation of spectral efficiency gain largely takes away the usual (almost religious) discussions of what is the right spectral efficiency and at what load. The effective (what that may be in your network) spectral efficiency gain moving from one radio-access release or generation to the next would be represented by the above Figure.

Theoretically this is all great! However,

Having the radio-access infrastructure supporting the most spectral efficient technology is the easy part (i.e., thousands of radio nodes), getting your customer base migrated to the most spectral efficient technology is where the challenge starts (i.e., millions of devices).

In other words, to get maximum benefits of a given 3GPP Release gains, an operator needs to migrate his customer-base terminal equipment to that more Efficient Release. This will take time and might be costly, particular if accelerated. Irrespective, migrating a customer base from radio-access A (e.g., GSM) to radio-access B (e.g., LTE), will take time and adhere to normal market dynamics of churn, retention, replacement factors, and gross-adds. The migration to a better radio-access technology can be stimulated by above-market-average acquisition & retention investments and higher-than-market-average terminal equipment subsidies. In the end competitors market reactions to your market actions, will influence the migration time scale very substantially (this is typically under-estimate as competitive driving forces are ignored in most analysis of this problem).

The typical radio-access network modernization cycle has so-far been around 5 years. Modernization is mainly driven by hardware obsolescence and need for more capacity per unit area than older (first & second) generation equipment could provide. The most recent and ongoing modernization cycle combines the need for LTE introduction with 2G and possibly 3G modernization. In some instances retiring relative modern 3G equipment on the expense of getting the latest multi-mode, so-called Single-RAN equipment, deployed, has been assessed to be worth the financial cost of write-off.  This new cycle of infrastructure improvements will in relative terms far exceed past upgrades. Software Definable Radios (SDR) with multi-mode (i.e., 2G, 3G, LTE) capabilities are being deployed in one integrated hardware platform, instead of the older generations that were separated with the associated floor space penalty and operational complexity. In theory only Software Maintenance & simple HW upgrades (i.e., CPU, memory, etc..) would be required to migrate from one radio-access technology to another. Have we seen the last HW modernization cycle? … I doubt it very much! (i.e., we still have Cloud and Virtualization concepts going out to the radio node blurring out the need for own core network).

Multi-mode SDRs should in principle provide a more graceful software-dominated radio-evolution to increasingly more efficient radio access; as cellular networks and customers migrate from HSPA to HSPA+ to LTE and to LTE-advanced. However, in order to enable those spectral-efficient superior radio-access technologies, a Mobile Network Operator will have to follow through with high investments (or incur high incremental operational cost) into vastly improved backhaul-solutions and new antenna capabilities than the past access technologies required.

Whilst the radio access network infrastructure has gotten a lot more efficient from a cash perspective, the peripheral supporting parts (i.e., antenna, backhaul, etc..) has gotten a lot more costly in absolute terms (irrespective of relative cost per Byte might be perfectly OKAY).

Thus most of the economics of spectral efficiency can and will be captured within the modernization cycles and new software releases without much ado. However, backhaul and antenna technology investments and increased operational cost is likely to burden cash in the peak of new equipment (including modernization) deployment. Margin pressure is therefor likely if the Opex of supporting the increased performance is not well managed.

To recapture the most important issues of Spectrum Efficiency Economics:

  • network infrastructure upgrades, from a hardware as well as software perspective, are required => capital investments, though typically result in better Operational cost.
  • optimal customer migration to better and more efficient radio-access technologies => market invest and terminal subsidies.

Boosting spectrum much beyond 6 times today’s mobile data dedicated spectrum position is unlikely to happen within a foreseeable time frame. It is also unlikely to happen in bands that would be very interesting for both providing both excellent depth of coverage and at the same time depth of capacity (i.e., lower frequency bands with lots of bandwidth available). Spectral efficiency will improve with both next generation HSPA+ as well as with LTE and its evolutionary path. However, depending on how we count the relative improvement, it is not going to be sufficient to substantially boost capacity and performance to the level a “1,000 times challenge” would require.

This brings us to the topic of vastly increased cell site density and of course Small Cell Economics.

THE ECONOMICS OF INCREASED CELL SITE DENSITY

It is fairly clear that there will not be a lot new spectrum available in the next 10+ years. The relative increase in cellular bandwidth will come from re-purposing & perfecting existing legacy spectrum (i.e., by re-farming) and acquiring some new bandwidth in the low frequency range (<800MHz) which per definition is not going to provide a lot of bandwidth.  The very high-frequency range (>3GHz) will contain a lot of bandwidth, but is only interesting for Small Cell and Femto-cell like deployments (feeding frenzy for Small Cells).

Financially Mobile Operators in mature markets, such as Western Europe, will be lucky to keep their earning and margins stable over the next 8 – 10 years. Mobile revenues are likely to stagnate and possible even decline. Opex pressure will continue to increase (e.g., just simply from inflationary pressures alone). MNOs are unlikely to increase cell site density, if it leads to incremental cost & cash pressure that cannot be recovered by proportional Topline increases. Therefor it should be clear that adding many more cell sites (being it Macro, Pico, Nano or Femto) to meet increasing (often un-managed & unprofitable) cellular demand is economically unwise and unlikely to happen unless followed by Topline benefits.

Increasing cell density dramatically (i.e., 56 times is dramatic!) to meet cellular data demand will only happen if it can be done with little incremental cost & cash pressure.

I have no doubt that distributing mobile data traffic over more and smaller nodes (i.e., decrease traffic per node) and utilize open-access technologies to manage data traffic loads are likely to mitigate some of the cash and margin pressure from supporting the higher performance radio-access technologies.

So let me emphasize that there will always be situations and geographical localized areas where cell site density will be increased disregarding the economics, in order to increase urgent capacity needs or to provide specialized-coverage needs. If an operator has substantially less spectral overhead (e.g., AT&T) than a competitor (e.g., T-Mobile US), the spectrum-starved operator might decide to densify with Small Cells and/or Distributed Antenna Systems (DAS) to be able to continue providing a competitive level of service (e.g., AT&T’s situation in many of its top markets). Such a spectrum starved operator might even have to rely on massive WiFi deployments to continue to provide a decent level of customer service in extreme hot traffic zones (e.g., Times Square in NYC) and remain competitive as well as having a credible future growth story to tell shareholders.

Spectrum-starved mobile operators will move faster and more aggressively to Small Cell Network solutions including advanced (and not-so-advanced) WiFi solutions. This fast learning-curve might in the longer term make up for a poorer spectrum position.

In the following I will consider Small Cells in the widest sense, including solutions based both on controlled frequency spectrum (e.g., HSPA+, LTE bands) as well in the ISM frequency bands (i.e., 2.4GHz and 5.8GHz). The differences between the various Small Cell options will in general translate into more or less cells due to radio-access link-budget differences.

As I have been involved in many projects over the last couple of years looking at WiFi & Small Cell substitution for macro-cellular coverage, I would like to make clear that in my opinion:

A Small Cells Network is not a good technical (or economical viable) solution for substituting macro-cellular coverage for a mobile network operator.

However, Small Cells however are Great for

  • Specialized coverage solutions difficult to reach & capture with standard macro-cellular means.
  • Localized capacity addition in hot traffic zones.
  • Coverage & capacity underlay when macro-cellular cell split options have been exhausted.

The last point in particular becomes important when mobile traffic exceeds the means for macro-cellular expansion possibilities, i.e., typically urban & dense-urban macro-cellular ranges below 200 meters and in some instances maybe below 500 meters pending on the radio-access choice of the Small Cell solution.

Interference concerns will limit the transmit power and coverage range. However our focus are small localized and tailor-made coverage-capacity solutions, not a substituting macro-cellular coverage, range limitation is of lesser concern.

For great accounts of Small Cell network designs please check out Iris Barcia (@IBTwi) & Simon Chapman (@simonchapman) both from Keima Wireless. I recommend the very insightful presentation from Iris “Radio Challenges and Opportunities for Large Scale Small Cell Deployments” which you can find at “3G & 4G Wireless Blog” by Zahid Ghadialy (@zahidtg, a solid telecom knowledge source for our Industry).

When considering small cell deployment it makes good sense to understand the traffic behavior of your customer base. The Figure below illustrates a typical daily data and voice traffic profile across a (mature) cellular network:

a_typical_traffic_day_in_europe

  • up-to 80% of cellular data traffic happens either at home or at work.+

Currently there is an important trend, indicating that the evening cellular-data peak is disappearing coinciding with the WiFi-peak usage taking over the previous cellular peak hour.

A great source of WiFi behavioral data, as it relates to Smartphone usage, you will find in Thomas Wehmeier’s (Principal Analyst, Informa: @Twehmeier) two pivotal white papers on  “Understanding Today’s Smatphone User” Part I and Part II.

The above daily cellular-traffic profile combined with the below Figure on cellular-data usage per customer distributed across network cells

traffic_over_network_distribution

shows us something important when it comes to small cells:

  • Most cellular data traffic (per user) is limited to very few cells.
  • 80% (50%) of the cellular data traffic (per user) is limited to 3 (1) main cells.
  • The higher the cellular data usage (per user) the fewer cells are being used.

It is not only important to understand how data traffic (on a per user) behaves across the cellular network. It is likewise very important to understand how the cellular-data traffic multiplex or aggregate across the cells in the mobile network.

We find in most Western European Mature 3G networks the following trend:

traffic_over_cell_distribution

  • 20% of the 3G Cells carries 60+% of the 3G data traffic.
  • 50% of the 3G Cells carriers 95% or more of the 3G data traffic.

Thus relative few cells carries the bulk of the cellular data traffic. Not surprising really as this trend was even more skewed for GSM voice.

The above trends are all good news for Small Cell deployment. It provides confidence that small cells can be effective means to taking traffic away from macro-cellular areas, where there is no longer an option for conventional capacity expansions (i.e., sectorization, additional carrier or conventional cell splits).

For the Mobile Network Operator, Small Cell Economics is a Total Cost of Ownership exercise comparing Small Cell Network Deployment  to other means of adding capacity to the existing mobile network.

The Small Cell Network needs (at least) to be compared to the following alternatives;

  1. Greenfield Macro-cellular solutions (assuming this is feasible).
  2. Overlay (co-locate) on existing network grid.
  3. Sectorization of an existing site solution (i.e., moving from 3 sectors to 3 + n on same site).

Obviously, in the “extreme” cellular-demand limit where non of the above conventional means of providing additional cellular capacity are feasible, Small Cell deployment is the only alternative (besides doing nothing and letting the customer suffer). Irrespective we still need to understand how the economics will work out, as there might be instances where the most reasonable strategy is to let your customer “suffer” best-effort services. This would in particular be the case if there is no real competitive and incremental Topline incentive by adding more capacity.

However,

Competitive circumstances could force some spectrum-starved operators to deploy small cells irrespective of it being financially unfavorable to do so.

Lets begin with the cost structure of a macro-cellular 3G Greenfield Rooftop Site Solution. We take the relevant cost structure of a configuration that we would be most likely to encounter in a Hot Traffic Zone / Metropolitan high-population density area which also is likely to be a candidate area for Small Cell deployment. The Figure below shows the Total Cost of Ownership, broken down in Annualized Capex and Annual Opex, for a Metropolitan 3G macro-cellular rooftop solution:

tco_greenfield_rooftop_site

Note 1: The annualized Capex has been estimated assuming 5 years for RAN Infra, Backaul & Core, and 10 years for Build. It is further assumed that the site is supported by leased-fiber backhaul. Opex is the annual operational expense for maintaining the site solution.

Note 2: Operations Opex category covers Maintenance, Field-Services, Staff cost for Ops, Planning & optimization. The RAN infra Capex category covers: electronics, aggregation, antenna, cabling, installation & commissioning, etc..

Note 3: The above illustrated cost structure reflects what one should expect from a typical European operation. North American or APAC operators will have different cost distributions. Though it is not expected to change conclusions substantially (just redo the math).

When we discuss Small Cell deployment, particular as it relates to WiFi-based small cell deployment, with Infrastructure Suppliers as well as Chip Manufacturers you will get the impression that Small Cell deployment is Almost Free of Capex and Opex; i.e., hardly any build cost, free backhaul and extremely cheap infrastructure supported by no site rental, little maintenance and ultra-low energy consumption.

Obviously if Small Cells cost almost nothing, increasing cell site density with 56 times or more becomes very interesting economics … Unfortunately such ideas are wishful thinking.

For Small Cells not to substantially pressure margins and cash, Small Cell Cost Scaling needs to be very aggressive. If we talk about a 56x increase in cell site density the incremental total cost of ownership should at least be 56 times better than to deploy a macro-cellular expansion. Though let’s not fool ourselves!

No mobile operator would densify their macro cellular network 56 times if absolute cost would proportionally increase!

No Mobile operator would upsize their cellular network in any way unless it is at least margin, cost & cash neutral.

(I have no doubt that out there some are making relative business cases for small cells comparing an equivalent macro-cellular expansion versus deploying Small Cells and coming up with great cases … This would be silly of course, not that this have ever prevented such cases to be made and presented to Boards and CxOs).

The most problematic cost areas from a scaling perspective (relative to a macro-cellular Greenfield Site) are (a) Site Rental (lamp posts, shopping malls,), (b) Backhaul Cost (if relying on Cable, xDSL or Fiber connectivity), (c) Operational Cost (complexity in numbers, safety & security) and (d) Site Build Cost (legal requirements, safety & security,..).

In most realistic cases (I have seen) we will find a 1:12 to 1:20 Total Cost of Ownership difference between a Small Cell unit cost and that of a Macro-Cellular Rooftop’s unit cost. While unit Capex can be reduced very substantially, the Operational Expense scaling is a lot harder to get down to the level required for very extensive Small Cell deployments.

EXAMPLE:

For a typical metropolitan rooftop (in Western Europe) we have the annualized capital expense (Capex) of ca. 15,000 Euro and operational expenses (Opex) in the order of 30,000 Euro per annum. The site-related Opex distribution would look something like this;

  • Macro-cellular Rooftop 3G Site Unit Annual Opex:
  • Site lease would be ca. 10,500EUR.
  • Backhaul would be ca. 9,000EUR.
  • Energy would be ca. 3,000EUR.
  • Operations would be ca. 7,500EUR.
  • i.e., total unit Opex of 30,000EUR (for average major metropolitan area)

Assuming that all cost categories could be scaled back with a factor 56 (note: very big assumption that all cost elements can be scaled back with same factor!)

  • Target Unit Annual Opex cost for a Small Cell:
  • Site lease should be less than 200EUR (lamp post leases substantially higher)
  • Backhaul should be  less than 150EUR (doable though not for carrier grade QoS).
  • Energy should be less than 50EUR (very challenging for todays electronics)
  • Operations should be less than 150EUR (ca. 1 hour FTE per year … challenging).
  • Annual unit Opex should be less than 550EUR (not very likely to be realizable).

Similar for the Small Cell unit Capital expense (Capex) would need to be done for less than 270EUR to be fully scalable with a macro-cellular rooftop (i.e., based on 56 times scaling).

  • Target Unit Annualized Capex cost for a Small Cell:
  • RAN Infra should be less than 100EUR (Simple WiFi maybe doable, Cellular challenging)
  • Backhaul would be less than 50EUR (simple router/switch/microwave maybe doable).
  • Build would be less than 100EUR (very challenging even to cover labor).
  • Core would be less than 20EUR (doable at scale).
  • Annualized Capex should be less than 270EUR (very challenging to meet this target)
  • Note: annualization factor: 5 years for all including Build.

So we have a Total Cost of Ownership TARGET for a Small Cell of ca. 800EUR

Inspecting the various capital as well as operational expense categories illustrates the huge challenge to be TCO comparable to a macro-cellular urban/dense-urban 3G-site configuration.

Massive Small Cell Deployment needs to be almost without incremental cost to the Mobile Network Operator to be a reasonable scenario for the 1,000 times challenge.

Most the analysis I have seen, as well as carried out myself, on real cost structure and aggressive pricing & solution designs shows that the if the Small Cell Network can be kept between 12 to 20 Cells (or Nodes) the TCO compares favorably to (i.e., beating) an equivalent macro-cellular solution. If the Mobile Operator is also a Fixed Broadband Operator (or have favorable partnership with one) there are in general better cost scaling possible than above would assume (e.g., another AT&T advantage in their DAS / Small Cell strategy).

In realistic costing scenarios so far, Small Cell economical boundaries are given by the Figure below:

Let me emphasize that above obviously assumes that an operator have a choice between deploying a Small Cell Network and conventional Cell Split, Nodal Overlay (or co-location on existing cellular site) or Sectorization (if spectral capacity allows). In the Future and in Hot Traffic Zones this might not be the case. Leaving Small Cell Network deployment or letting the customers “suffer” poorer QoS be the only options left to the mobile network operator.

So how can we (i.e., the Mobile Operator) improve the Economics of Small Cell deployment?

Having access fixed broadband such as fiber or high-quality cable infrastructure would make the backhaul scaling a lot better. Being a mobile and fixed broadband provider does become very advantageous for Small Cell Network Economics. However, the site lease (and maintenance) scaling remains a problem as lampposts or other interesting Small Cell locations might not scale very aggressively (e.g., there are examples of lamppost leases being as expensive as regular rooftop locations). From a capital investment point of view, I have my doubts whether the price will scale downwards as favorable as they would need to be. Much of the capacity gain comes from very sophisticated antenna configurations that is difficult to see being extremely cheap:

Small Cell Equipment Suppliers would need to provide a Carrier-grade solution priced at  maximum 1,000EUR all included! to have a fighting chance of making massive small cell network deployment really economical.

We could assume that most of the “Small Cells” are in fact customers existing private access points (or our customers employers access points) and simply push (almost) all cellular data traffic onto those whenever a customer is in vicinity of such. All those existing and future private access points are (at least in Western Europe) connected to at least fairly good quality fixed backhaul in the form of VDSL, Cable (DOCSIS3), and eventually Fiber. This would obviously improve the TCO of “Small Cells” tremendously … Right?

Well it would reduce the MNOs TCO (as it shift the cost burden to the operator’s customer or employers of those customers) …Well … This picture also would  not really be Small Cells in the sense of proper designed and integrated cells in the Cellular sense of the word, providing the operator end-2-end control of his customers service experience. In fact taking the above scenario to the extreme we might not need Small Cells at all, in the Cellular sense, or at least dramatically less than using the standard cellular capacity formula above.

In Qualcomm (as well as many infrastructure suppliers) ultimate vision the 1,000x challenge is solved by moving towards a super-heterogeneous network that consist of everything from Cellular Small Cells, Public & Private WiFi access points as well as Femto cells thrown into the equation as well.

Such an ultimate picture might indeed make the Small Cell challenge economically feasible. However, it does very fundamentally change the current operational MNO business model and it is not clear that transition comes without cost and only benefits.

Last but not least it is pretty clear than instead of 3 – 5 MNOs all going out plastering walls and lampposts with Small Cell Nodes & Antennas sharing might be an incredible clever idea. In fact I would not be altogether surprised if we will see new independent business models providing Shared Small Cell solutions for incumbent Mobile Network Operators.

Before closing the Blog, I do find it instructive to pause and reflect on lessons from Japan’s massive WiFi deployment. It might serves as a lesson to massive Small Cell Network deployment as well and an indication that collaboration might be a lot smarter than competition when it comes to such deployment:

softband_wifi_deployment

, , , , , , , , , , , , , , , , , ,

1 Comment

Mobile Data Growth … The Perfect Storm? (PART 1)

The Perfect Mobile Data StormSmartphone Challenge and by that the Signalling Storm

Mobile Operators hit by the Mobile Data Tsunami … tumbling over mobile networks … leading to

Spectrum Exhaustion

and

Cash Crunch

and

Financial disaster (as cost of providing mobile data exceeds the revenues earned from mobile data).

as Mobile Operators tries to cope with hyper-inflationary growth of data usage.

Will LTE be ready in time?

Will LTE be sufficient remedying the mobile data growth observed the last couple of years?

The Mobile Industry would have been better off if Data Consumption had stayed “Fixed”? Right! …Right?

At this time my Twitter Colleague Dean Bubley (@Disruptivedean) will be near critical meltdown 😉 …

Dean Bubley (Disruptive Wireless) is deeply skeptical about the rhetoric around the mobile data explosion and tsunamis, as he has accounted for in a recent Blog “Mobile data traffic growth – a thought experiment and forecast”. Dean hints at possible ulterior motives behind the dark dark picture of the mobile data future painted by the Mobile Industry.

I do not share Dean’s opinion (re:ulterior motives in particular, most of his other thoughts on cellular data growth are pretty OK!). It almost suggest a Grand Mobile Industry Conspiracy in play … Giving the Telco Industry a little too much credit … Rather than the simple fact that we as an industry (in particular the Marketing side of things) tends to be govern by the short term. Being “slaves of anchoring bias” to the most recent information available to us (i.e, rarely more than the last 12 or so month).

Of course Technology Departments in the Mobile Industry uses the hyper-growth of Cellular Data to get as much Capex as possible. Ensure sufficient capacity overhead can be bought and build into the Mobile Networks, mitigating the uncertainty and complexity of Cellular data growth.

Cellular Data is by its very nature a lot more difficult to forecast and plan for than the plain old voice service.

The Mobile Industry appears to suffer from Mobile Data AuctusphopiaThe Fear of Growth (which is sort of “funny” as the first ca. 4 – 5 years of UMTS, we all were looking for growth of data, and of course the associated data revenues, that would make our extremely expensive 3G spectrum a somewhat more reasonable investment … ).

The Mobile Industry got what it wished for with the emergence of the Smartphone (Thanks Steve!).

Why Data Auctusphopia? … ?

Let’s assume that an operator experienced a Smartphone growth rate of 100+% over the last 12 month. In addition, the operator also observes the total mobile data volume demand growing with 250+% (i.e., not uncommon annual growth rates between 2010 and 2011). Its very tempting (i.e., it is also likely to be very wrong!) to use the historical growth rate going forward without much consideration for the underlying growth dynamics of technology uptake, migration and usage-per-user dynamics. Clearly one would be rather naive NOT to be scared about the consequences of a sustainable annual growth rate of 250%! (irrespective of such thinking being flawed).

Problem with this (naive) “forecasting” approach is that anchoring on the past is NOT likely to be a very good predictor for longer/long term expectations.

THE GROWTH ESSENTIALS – THE TECHNOLOGY ADAPTATION.

To understand mobile data growth, we need to look at minimum two aspects of Growth:

  1. Growth of users (per segment) using mobile data (i.e., data uptake).
  2. Growth of data usage per user segment (i.e., segmentation is important as averages across a whole customer base can be misleading).

i.e., Growth can be decomposed into uptake rate of users  and growth of these users data consumption, i.e., CAGR_Volume = (1 + CAGR_Users) x (1+CAGR_Usage) – 1.

The segmentation should be chosen with some care, although a split in Postpaid and Prepaid should be a minimum requirement. Further refinements would be to include terminal type & capabilities, terminal OS, usage categories, pricing impacts, etc.. and we see that the growth prediction process very rapidly gets fairly complex, involving a high amount of uncertain assumptions. Needless to say that Growth should be considered per Access Technology, i.e., split in GPRS/EDGE, 3G/HSPA, LTE/LTE-a and WiFi.

Let’s have a look at (simple) technology growth of a new technology or in other words the adaptation rate.

The above chart illustrates the most common uptake trend that we observe in mobile networks (and in many other situations of consumer product adaptation). The highest growth rates are typically observed in the beginning. Over time the growth rate slows down as saturation is reached. In other words the source of growth has been exhausted.

At Day ZERO there where ZERO 3G terminals and their owners.

At Day ONE some users had bought 3G terminals (e..g, Nokia 6630).

Between Zero and Some, 3G terminals amounts to an Infinite growth rate … So Wow! … Helpful … Not really!

Some statistics:

In most countries it has taken on average 5 years to reach a 20% 3G penetration.

The KA moment of 3G uptake really came with the introduction of the iPhone 3 (June 9 2008) and HTC/Google G1 (October 2008) smartphones.

Simplified example: in 4 years a Mobile Operator’s 3G uptake went from 2% to 20%. An compounded annual growth rate (CAGR) of at least 78%. Over the same period the average mobile (cellular!) data consumption per user increased by a factor 15 (e.g., from 20MB to 300MB), which gives us a growth rate of 97% per anno. Thus the total volume today is at least 150 times that of 4 years ago or equivalent to an annual growth rate 250%!

Geoffrey A. Moore’s book “Crossing the Chasm” (on Marketing and Selling High-Tech products to mainstream customers) different segmentation of growth have been mapped out in (1) Innovators (i.e., first adopters), (2) Early Adoptors, (3) Early Majority, (4) Late Majority and (5) The Laggards.

It is fairly common to ignore the Laggards in most analysis, as these do not cause direct problems for new technology adaptation. However, in mobile networks Laggards can become a problem if they prevent the operator to re-farm legacy spectrum by refusing to migrate, e.g., preventing GSM 900MHz spectrum to be re-purposed to UMTS or GSM 1800 to be re-purposed to LTE.

Each of the stages defined by Geoffrey Moore correspond to a different time period in the life cycle of a given product and mapped to above chart on technology uptake looks like this:

In the above “Crossing the Chasm” chart I have imposed Moore’s categories on a logistic-like (or S-curve shaped) cumulative distribution function rather than the Bell Shaped (i.e., normal distribution) chosen in his book.

3G adaptation has typically taken ca. 5+/-1 years from launch to reach the stage of Early Majority.

In the mobile industry its fairly common for a user to have more than 1 device (i.e., handset typically combined with data stick, tablet, as well as private & work related device split, etc..). In other words, there are more mobile accounts than mobile users.

In 2011, Western Europe had ca. 550 Million registered mobile accounts (i.e., as measured by active SIM Cards) and a population of little over 400 Million. Thus a mobile penetration of ca. 135% or if we consider population with a disposable income 160+%.

The growth of 3G users (i.e., defined as somebody with a 3G capable terminal equipment) have been quiet incredible with initial annual growth rates exceeding 100%. Did this growth rate continue? NO it did NOT!

As discussed previously, it is absolutely to be expected to see very high growth rates in the early stages or technology adaptation. The starting is Zero or Very Low and incremental additions weight more in the beginning than later on in the adaptation process.

The above chart (“CAGR of 3G Customer Uptake vs 3G Penetration”) illustrates the annual 3G uptake growth rate data points, referenced to the year of 10% penetration, for Germany, Netherlands and USA (i.e., which includes CDMA2000). It should be noted that 3G Penetration levels above 50+% are based on Pyramid Research projections.

The initial growth rates are large and then slows down as the 3G penetration increases.

As saturation is reached the growth rate comes almost to a stop.

3G saturation level is expected to be between 70% and 80+% … When LTE takes over!

For most Western European markets the saturation is expected to be reached between 2015 – 2018 and sooner in the USA … LTE takes over!

The (diffusion) process of Technology uptake can be described by S-shaped curves (e.g., as shown in “Crossing the Chasm”). The simplest mathematical description is a symmetric logistic function (i..e, Sigmoid) that only depends on time. The top solid (black) curve shows the compounded annual growth rate, referenced to the Year of 10% 3G penetration, vs 3G penetration. Between 10% and 15% 3G penetration the annual growth rate is 140%, between 10% and 50% its “only” 108% and drops to 65% at 90% 3G penetration (which might never be reached as users starts migrating to LTE).

The lower dashed (black) curve is a generalized logistic function that provides a higher degree of modelling flexibility accounting for non-symmetric adaptation rate pending on the 3G penetration. No attempt of curve fitting to the data has been applied in the chart above. I find the generalized logistic function in general can be made to agree well with actual uptake data. Growth here is more modest with 72% (vs 140% for the Simple Logistic representation), 57% (vs 108%) and 35% (vs 65%). Undershooting in the beginning of the growth process (from 10% ->;20%: Innovators & Early Adopters phase) but representing actual data after 20% 3G penetration (Early and Late Majority).

Finally, I have also included the Gomperz function (also sigmoid) represented by light (grey) dashed line in between the Simple and Generalized Logistic Functions. The Gomperz function has found many practical applications describing growth. The parameters of the Gormperz function can be chosen so growth near lower and upper boundaries are different (i.e., asymmetric growth dynamics near the upper and lower asymptotes).

As most mature 3G markets have passed 50% 3G penetration (i.e., eating into the Late Majority) and approaching saturation, one should expect to see annual growth rates of 3G uptake to rapidly reduce. The introduction of LTE will also have a substantial impact of the 3G uptake and growth.

Of course the above is a simplification of the many factors that should be considered. It is important that you;

  1. Differentiate between Prepaid & Postpaid.
  2. Consider segmentation (e.g., Innovator, First Adopter, Early Majority & Late Majority).
  3. Projections should Self-consistent with market dynamics: i.e., Gross Adds, Churn, hand-down and upgrade dynamics within Base, etc…

THE GROWTH ESSENTIALS – THE CELLULAR USAGE.

In the following I will focus on Cellular (or Mobile) data consumption. Thus any WiFi consumption on public, corporate or residential access points are deliberately not considered in the following. Obviously, in cellular data demand forecasting WiFi usage can be important as it might be a potential source for cellular consumption via on-loading. In particular with new and better performing cellular technologies are being introduced (i.e., LTE / LTE advanced). Also price plan policy changes might result in higher on-load of the cellular network (at least if that network is relative unloaded and with lots of spare capacity).

It should come as no surprise that today the majority of mobile data consumers are Postpaid.

Thus, most of the average data usage being reported are based on the Postpaid segment. This also could imply that projecting future usage based on past and current usage could easily overshoot. Particular if Prepaid consumption would be substantially lower than Postpaid data consumption. The interesting and maybe somewhat surprising is that Active Prepaid mobile data consumers can have a fairly high data consumption (obviously pending price plan policy). In the example shown below, for an Western European Operator with ca. 50%:50% Postpaid – Prepaid mix, the Postpaid active mobile data consumers are 85% of total Postpaid Base. The Mobile Data Active Prepaid base only 15% (though growing fast).

The illustrated data set, which is fairly representative for an aggressive smartphone operation, have an average data consumption of ca. 100MB (based on whole customer base) and an Active Average consumption of ca. 350MB. Though fairly big consumptive variations are observed within various segments of the customer base.

The first 4 Postpaid price plans are Smartphone based (i.e., iOS and Android) and comprises 80% of all active devices on the Network. “Other Postpaid” comprises Basic Phones, Symbian and RIM devices. The Active Prepaid device consumption are primarily Android based.

We observe that the following:

  1. Unlimited price plan results in the highest average volumetric usage (“Unlimited Postpaid” & “Postpaid 1″ price plans are comparable in device composition. The difference is in one being unlimited the other not).
  2. Unlimited average consumption dominated by long tail towards extreme usage (see chart below).
  3. Smartphone centric postpaid price plans tend to have a very high utilization percentage (90+%).
  4. Active Prepaid Data Consumption (200MB) almost as high as less aggressive smartphone (210MB) price plans (this is however greatly depending on prepaid price policy).

The above chart “Cellular Data Consumption Distribution” illustrates the complexity of technology and cellular data consumption even within different price plan policies. Most of the distributions consist of up-to 4 sub-segments of usage profiles.Most notably is the higher consumption segment and the non-/very-low consumptive segment.

There are several observations worth mentioning:

  • Still a largely untapped Prepaid potential (for new revenue as well as additional usage).
  • 15% of Postpaid consumers are data inactive (i.e., Data Laggards).
  • 40% of active Postpaid base consumes less than 100MB or less than 1/4 of the average high-end Smartphone usage.

Clearly, the best approach to come to a meaningful projection of cellular data usage (per consumer) would be to consider all the above factors in the estimate.

However, there is a problem!

The Past Trends may not be a good basis for predicting Future Trends!

Using The Past we might risk largely ignoring:

  1. Technology Improvements that would increase cellular data consumption.
  2. New Services that would boost cellular data usage per consumer.
  3. New Terminal types that would lead to another leapfrog in cellular data consumption.
  4. Cellular Network Congestion leading to reduced growth of data consumption (i.e., reduced available speed per consumer, QoS degradation, etc..).
  5. Policy changes such as Cap or allowing Unlimited usage.

Improvements in terminal equipment performance (i.e., higher air interface speed capabilities, more memory, better CPU performance, larger / better displays, …) should be factored into the cellular data consumption as the following chart illustrates (for more details see also Dr. Kim’s Slideshare presentation on “Right Pricing Mobile Broadband: Examing The Business Case for Mobile Broadband”).

I like to think about every segment category has its own particular average data usage consumption. A very simple consideration (supported by real data measurements) would to expect to find the extreme (or very high) data usage in the Innovator and Early Adopter segments and as more of the Majority (Early as well as Late) are considered the data usage reduces. Eventually at Laggards segment hardy any data usage is observed.

It should be clear that the above average usage-distribution profile is dynamic. As time goes by the distribution would spread out towards higher usage (i.e., the per user per segment inflationary consumption). At the same time as increasingly more of the customer base reflects the majority of the a given operators customer base (i.e., early and late majority)

Thus over time it would be reasonable to expect that?

The average volumetric consumption could develop to an average that is lower than when Innovators & Early Adopters dominated.

Well maybe!? Maybe not?!

The usage dynamics within a given price plan is non-trivial (to say the least) and we see in general a tendency towards higher usage sub-segment (i.e., within a given capped price plan). The following chart (below) is a good example of the data consumption within the same Capped Smartphone price plan over an 12 month period. The total amount of consumers in this particular example have increased 2.5 times over the period.

It is clear from above chart that over the 12 month period the higher usage sub-segment has become increasingly popular. Irrespective the overall average (including non-active users of this Smartphone price plan) has not increased over the period.

Though by no means does this need to be true for all price plans. The following chart illustrates the dynamics over a 12 month period of an older Unlimited Smartphone price plan:

Here we actually observe a 38% increase in the average volumetric consumption per customer. Over the period the ca. 50% of customers in this price plan have dropped out leaving primarily heavy users enjoy the benefits on unlimited consumption.

There is little doubt that most mature developed markets with a long history of 3G/HSPA will have reached a 3G uptake level that includes most of the Late Majority segment.

However, for the prepaid segment it is also fair to say that most mobile operators are likely only to have started approach and appeal to Innovators and Early Adopters. The chart below illustrates the last 12 month prepaid cellular consumptive behavior.

In this particular example ca. 90% of the Prepaid customer base are not active cellular data consumers (this is not an unusual figure). Even over the period this number has not changed substantially. The Active Prepaid consumes on average 40% more cellular data than 12 month ago. There is a strong indication that the prepaid consumptive dynamics resembles that Postpaid.

Data Consumption is a lot more complex than Technology Adaptation of the Cellular Customer.

The data consumptive dynamics is pretty much on a high level as follows;

  1. Late (and in some case Early) Majority segments commence consuming cellular data (this will drag down the overall average).
  2. Less non-active cellular data consumers (beside Laggards) ->; having an upward pull on the average consumption.
  3. (in particular) Innovator & Early Adopters consumption increases within limits of given price plan (this will tend to pull up the average).
  4. General migration upwards to higher sub-segmented usage (pulling the overall average upwards).
  5. If Capped pricing is implemented (wo any Unlimited price plans in effect) growth will slow down as consumers approach the cap.

We have also seen that it is sort of foolish to discuss a single data usage figure and try to create all kind of speculative stories about such a number.

BRINGING IT ALL TOGETHER.

So what’s all this worth unless one can predict some (uncertain) growth rates!

WESTERN EUROPE (AT, BE, DK, FIN, F, DE,GR,IRL,IT,NL,N,P, ESP, SE, CH, UK,)

3G uptake in WEU was ca. 60% in 2011 (i.e., ca. 334 Million 3G devices). This correspond to ca. 90% of all Postpaid customers and 32% of all Prepaid users have a 3G device. Of course it does not mean that all of these are active cellular data users. Actually today (June 2012) ca. 35% of the postpaid 3G users can be regarded as non-active cellular user and for prepaid this number may be as high as 90%.

For Western Europe, I do not see much more 3G additions in the Postpaid segment. It will be more about replacement and natural upgrade to higher capable devices (i.e., higher air interface speed, better CPU, memory, display, etc..). We will see an increasing migration from 3G Postpaid towards LTE Postpaid. This migration will really pick-up between 2015 and 2020 (Western Europe lacking behind LTE adaptation in comparison with for example USA and some of the Asian Pacific countries). In principle this could also mean that growth of 3G postpaid cellular data consumption could rapidly decline (towards 2020) and we would start seeing overall cellular data usage decline rather than increase of 3G Postpaid data traffic.

Additional Cellular data growth may come from the Prepaid segment. However, still a very large proportion of this segment is largely data in-active in Western Europe. There are signs that, depending on the operator prepaid price plan policy, prepaid consumption appears to be fairly similar to Postpaid on a per user basis.

3G Growth Projections for Western Europe (reference year 2011):

Above assumes that usage caps will remain. I have assumed this to be 2GB (on average for WEU). Further in above it is assumed that the Prepaid segment will remain largely dominated by Laggards (i.e., in-active cellular data users) and that the active Prepaid cellular data users have consumption similar to Postpaid.

Overall 3G Cellular data growth for Western Europe to between 3x to no more than 4x (for very aggressive prepaid cellular data uptake & growth) over the period 2011 to 2016.

Postpaid 3G Cellular data growth will flatten and possible decline towards the end of 2020.

More agresive LTE Smartphone uptake (though on average across Western European appears unlikely) could further release 3G growth pains between 2015 – 2020.

Innovators & Early Adopters, who demand the most of the 3G Cellular Networks, should be expected to move quickly to LTE (as coverage is provided) off-loading the 3G networks over-proportionally.

The 3G cellular growth projections are an Average consideration for Western Europe where most of the postpaid 3G growth has already happen with an average of 60% overall 3G penetration. As a rule of thumb: the lower the 3G penetration the higher the CAGR growth rates (as measured from a given earlier reference point).

In order to be really meaningful and directly usable to a Mobile Operator, the above approach should be carried out for a given country and a given operator conditions.

The above growth rates are lower but within range of my Twitter Colleague Dean Bubley (@Disruptivedean) states as his expectations for Developed Markets in his Blog “Mobile data traffic growth – a thought experiment and forecast”. Not that it makes it more correct or more wrong! Though for any one who spend a little time on the growth fundamentals of existing Western European mobile data markets would not find this kind of growth rate surprising.

So what about LTE growth? … well given that we today (in Western Europe) have very very little installed base LTE devices on our networks … the growth or uptake (seen as on its own) is obviously going to be very HIGH the first 5 to 7 years (depending on go to market strategies).

What will be particular interesting with the launch of LTE is whether we will see an on-loading effect of the cellular LTE network from todays WiFi usage. Thomas Wehmeier (Principal Analyst, Telco Strategy, Informa @Twehmeier) has published to very interesting and study worthy reports on Cellular and WiFi Smartphone Usage (see “Understanding today’s smartphone user: Demystifying data usage trends on cellular & Wi-Fi networks” from Q1 2012 as well as Thomas’s sequential report from a couple of weeks ago “Understanding today’s smartphone user: Part 2: An expanded view by data plan size, OS, device type and LTE”).

THE CLIFFHANGER

Given the dramatic beginning of my Blog concerning the future of the Mobile Industry and Cellular data … and to be fair to many of the valid objections that Dean Bubley‘s has raised in his own Blog and in his Tweets … I do owe the reader who got through this story some answer …

I have no doubt (actually I know) that there mobile operators (around the world) that already today are in dire straits with their spectral resources due to very aggressive data growth triggered by the Smartphone. Even if growth has slowed down as their 3G customers (i.e., Postpaid segment) have reached the Late Majority (and possible fighting Laggards) that lower growth rate still causes substantial challenges to provide sufficient capacity & not to forget quality.

Yes … 3G/HSPA+ Small Cells (and DAS-like solutions) will help mitigate the growing pains of mobile operators, Yes … WiFi off-load too, Yes … LTE & LTE-advanced too will help. Though the last solution will not be much of a help before critical mass of LTE terminals have been reached (i.e., ca. 20% = Innovators + Early Adopters).

Often forgotten is traffic management and policy remedies (not per see Fair Use Policy though!) are of critical importance too in the toolset of managing cellular data traffic.

Operators in emerging markets and in markets with a relative low 3G penetration, better learn the Growth Lessons from the AT&T’s and other similar Front Runners in the Cellular Data and Smartphone Game.

  1. Unless you manage cellular data growth from the very early days, you are asking for (in-excusable) growth problems.
  2. Being Big in terms of customers are not per see a blessing if you don’t have proportionally the spectrum to support that Base.
  3. Don’t expect to keep the same quality level throughout your 3G Cellular Data life-cycle,!
  4. Accept that spectral overhead per customer obviously will dwindle as increasingly more customers migrate to 3G/HSPA+.
  5. Technology Laggards should be considered as the pose an enormous risk to spectral re-farming and migration to more data efficient technologies.
  6. Short Term (3 – 5 years) … LTE will not mitigate 3G growing pains (you have a problem today, its going to get tougher and then some tomorrow).

Is Doom knocking on Telecom’s Door? … Not very Likely (or at least we don’t need to open the door if we are smart about it) … Though if an Operator don’t learn fast and be furiously passionate about economical operation and pricing policies … things might look a lot more gloomy than what needs to be.

STAY TUNED FOR A PART 2 … taking up the last part in more detail.

ACKNOWLEDGEMENT

To great friends and colleagues that have challenged, suggested, discussed, screamed and shouted (in general shared the passion on this particular topic of Cellular Data Growth) about this incredible important topic for our Mobile Industry (and increasingly Fixed Broadband). I am in particular indebted to Dejan Radosavljevik for bearing with my sometimes crazy data requests (at odd h0urs and moments) and last but not least thinking along with me on what mobile data (cellular & WiFi) really means (though we both have come to the conclusion that being mobile is not what it means. But that is a different interesting story for another time).

, , , , , , , , , , , , , ,

2 Comments

Winner of the 700-MHz Auction is … Google! (from April 2008)

The United States has recently ended (March 2008) the auction of 5 blocks (see details below) of the analog TV spectrum band of 700-MHz. More specifically the band between 698 – 763 MHz (UL) and 728 – 793 MHZ (DL), with a total bandwidth of 2×28 MHz. In addition a single band 1×6 MHz in 722 – 728 MHz range was likewise auctioned. The analog TV band is expected to be completely vacated by Q1 2009.

The USA 700 MHz auction result was an impressive total of $19.12 billion, spend buying the following spectrum blocks: A (2×6 MHz), B (2×6 MHz), C (2×11 MHz) and E (1×6 MHz) blocks. The D (2×5 Mhz) block did not reach the minimum level. A total of 52 MHz (i.e, 2×23 + 1×6 MHz) bandwidth was auctioned off.

Looking with European eyes on the available spectrum allocated per block it is not very impressive (which is similar to other US Frequency Blocks per Operator, e.g., AWS & PCS). The 700 MHz frequency is clearly very economical for radio network coverage deployment in particular compared the high-frequency AWS spectrum used by T-Mobile, Verizon and Sprint. However, the 6 to 11 MHz (UL/DL) is not very impressive from a capacity sustainance perspective. It is quiet likely that this spectrum would be exhausted and rapidly leading to a significant additional financial commitment to cell splits / capacity extensions.

This $19.12 billion for 52 MHz translates to $1.22 per MHz spectrum per Population @ 700 MHz.

This should be compared to following historical auctions
* $0.56/MHz/Pop @ 1,700 MHz in 2006 US AWS auction
* $0.15/MHz/Pop (USA Auction 22 @ 1999) to $4.74/MHz/Pop (NYC, Verizon).
* $1.23/MHz/Pop Canadian 2000 PCS1900 Auction of 40MHz.
* $5.94/MHz/Pop UK UMTS auction (2001) in UK auctioning a total of 2×60 MHz FDD spectrum (TDD not considered).
* $7.84/MHz/Pop German UMTS auction in 2001 (2×60 MHz FDD, TDD not considered).

(Note: the excesses of the European UMTS auctions clearly illustrates a different time and place).

What is particular interesting is that Verizon “knocked-out” Google by paying $4.74 billion for the nationwide C-block of 2×11 MHz. “Beating” Google’s offer of $4.6 billion.

However, Google does not appear too sadened of the outcome and …. why should they! Google has to a great extend influenced the spectrum conditions allowing for open access (although it remains to be seen what this really means) to the C spectrum block; The USA Federal Communications Commission (FCC) has proposed to apply “open access” requirements for devices and applications on a the nation wide spectrum block C (2×11 MHz). 

Clearly Google should be regarded as the winner of the 700 MHz auction. They have avoided committing a huge amount of cash for the spectrum and on-top having to deploy even more cash to build and operate a wireless network (i.e., which is really their core business anyway).

Googling the Business Case
Google was willing to put down $4.6 billion for the 2×11 MHz @ 700 MHz. Let’s stop up an ask how their business case possible could have looked like.

At 700 MHz, with not too ambitious bandwidth per user requirements, Google might achieve a typical cell range between 2.5 and 4 km (Uplink limited, i.e., user equipment connection to base station). Although in “broadcast/downlink” mode, the cell range could be significantly larger (and downlink is all you really need for advertisement and broadcast;-).

Assume Google’s ambition was top-100 cities and 1-2% of the USA surface area they would need at least 30 thousand nodes. Financially (all included) this would likely result in $3 to $5 billion network capital expense (Capex) and a technology driven annual operational expense (Opex) of $300 to $500 million (in steady-state). On top of the spectrum price.

Using above rough technology indicators Google (if driven by sound financial principles) must have had a positive business case for a cash-out of minimum $8 billion over 10 years, incl. spectrum and discounted with WACC of 8% (all in all being very generous) and annual Technology Opex of minimum $300 million. On top of this comes customer acquisition, sales & marketing, building a wireless business operations (obviously they might choose to outsource all that jazz).

… and then dont forget the customer device that needs to be developed for the 700 MHz band (note GSM 750 MHz falls inside the C-band). Typically takes between 3 to 5 years to get a critical customer mass and then only if the market is stimulated.

It would appear to be a better business proporsition to let somebody else pay for spectrum, infrastructure, operation, etc… and just do what Google does best … selling advertisments and deliver search results … for mobile devices … maybe even agnostic to the frequency (seems better than wait until critical mass has been reached at the 700 MHz).

But then again … Google reported for full year 2007 a $16.4 billion in advertising revenues (up 56% compared to the previous year).(see refs Google Investor Relations). Imagine what this could be if extended to wireless / mobile market. Still lower than Verizon’s 2007 full year revnue of $23.8B (up 5.5% from 2006) but not that much lower considering the difference in growth rate.

The “successfull” proud owners (Verizon, AT&T Mobility, etc….) of the 700 MHz spectrum might want to keep in mind that Google’s business case for entering wireless must have been far beyond the their proposed $4.6 billion.

Appendix:
The former analog TV spectrum auction has been divided UHF spectrum into 5 blocks:
Block A: 2×6 MHz bandwidth (698–704 and 728–734 MHz); $3.96 billion
Block B: 2×6 MHz bandwidth (704–710 and 734–740 MHz); $9.14 billion dominated by AT&T Mobility.
Block C: 2×11 MHz bandwidth (746–757 and 776–787 MHz) Verizon $4.74 billion
Block D: 2×5 MHz bandwidth (758–763 and 788–793 MHz) No bids above the minimum.
Block E: 1×6 MHz bandwidth (722–728 MHz)Frontier Wireless LCC $1.26 billion

Source: http://harryshell.blogspot.de/2008/04/winner-of-700-mhz-auction-is-google.html

, , , , ,

2 Comments

Backhaul Pains (from April 2008)

Backhaul, which is the connection between a radio node and the core network, is providing mobile-wireless operators possible with the biggest headache ever (apart from keeping a healthy revenue growth in mature markets 😉 … it can be difficult to come by in the right quantities and can be rather costly with conventional transmission cost-structures … Backhaul is expected to have delayed the Sprint WiMAX rollout of their Xohm branded wireless internet service. A Sprint representative is supposed to have said: “You need a lot of backhaul capacity to do what’s required for WiMax.” (see forexample WiMax.com blog)

What’s a lot?

Well … looking at the expected WiMAX speed per Base Station (BS) of up-to 50 Mbps (i.e., 12 – 24x typical backhaul supporting voice demand), it is clear that finding suitable and low-cost bachaul solutions might be challenging. Conventional leased lines would be grossly un-economical at least if priced conventionally; xDSL and Fiber-to-the-Premises (FTTP) infrastructure that could support (economically?) such bandwidth demand is not widely deployed yet.

Is this a Sprint issue only? Nope! …. Sprint cannot be the only mobile-wireless operator with this problem – for UMTS/HSPA mobile operators the story should be pretty much the same (unless an operator has a good and modern microwave backhaul network supporting the BS speed).

Backhaul Pains – Scalability Issues
The backhaul connection can be either via a Leased Line (LL) or a Microwave (MW) radio link. Sometimes a MW link can be leased as well and might even be called a leased line.

With microwave (MW) links one can easily deliver multiples of 2.048 Mbps (i.e., 10 – 100 Mbps) on the same connection for relative low capital cost (€500 – €1,000 per 2.048 Mbps) and low operational expense. However planning and deployment experience and spectrum is required.

In many markets network operators have been using conventional (fixed) leased lines, leased from incumbent fixed-line providers. The pricing model is typically based on an upfront installation fee (might be capitalized) and a re-occurring monthly lease. On a yearly basis this operational expense can be in the order of €5,000 per 2.048 Mbps, i.e., 5x to 10 x the amount of a MW connection. Some price-models trade-off the 1-off installation fee with a lower lease cost.

Voice was the Good for Backhaul; Before looking at the broadband wireless data bandwidth demand its worth noticing that in the good old Voice days (i.e., GSM, IS95, ..) 1x to 2x 2.048 Mbps was more than sufficient to support most demands on a radio base station (BS).

Mobile-Wireless Broadband data enablers are the Bad and quickly becoming the Very Ugly for Backhaul; With the deployment of High Speed Packet Access (HSPA) on-top of UMTS and with WiMAX (a la Sprint) a BS can easily provide between 7.2 to 14.4 Mbps or higher per sector depending on available bandwidth. With 3 sectors per BS the total supplied data capacity could (in theory … ) be in excess of 21 Mbps per radio Base Station.

From the perspective of backhaul connectivity one would need at least an equivalent bandwidth of 10x 2.048 Mbps connections. Assuming such backhaul lease bandwidth is available in the first instance, with conventional leased line pricing structure, such capacity would be very expensive, i.e., €50,000 per backhaul connection per year. Thus, for 1,000 radio nodes an operator would pay on an annual basis 50 million Euro (Opex directly hitting the EBITDA). This operational expense could be 8 times more than a voice-based operational leased-line expense.

Now that’s alot!

Looking a little ahead (i.e., next couple of years) our UMTS and WiMAX based mobile networks will undergo the so-called Long-Term Evolution (LTE; FDD and TDD based) with expected radio node downlink (i.e., base station to user equipment) capacity between 173 Mbps and 326 Mbps depending on antenna system and available bandwidth (i.e., minimum 20 Mhz spectrum per sector). Thus over a 3-sectored BS (theoretical) speeds in excess of 520 Mbps might be dreamed of (i.e., 253x 2.048 Mbps – and this is HUGE!:-). Alas across a practical real-life deployed base station (on average) no more than 1/3 of the theoretical speed should be expected.

“Houston we have a problem” … should be ringing in any CFO / CTO’s ears – a. Financially near-future developments could significantly strain the Technology Opex budgets and b.Technically providing cost-efficient backhaul capacity that can sustain the promised land.

A lot of that above possible cost can and should be avoided; looking at possible remedies we have several options;

1. High capacity microwave backhaul can prevent the severe increase in leased line cost; provided spectrum and expertise is available. Financially microwave deployment has the advantage of being mainly capital-investment driven with resulting little additional operational expense per connection. It is expected that microwave solutions will be available in the next couple of years which can provide connection capacity of 100 Mbps and above.

Microwave backhaul solutions are clearly economical. However, it is doubtful that LTE speed requirements can be met even with most efficient microwave backhaul solutions?

2. Move to different leased line (LL) pricing mechanisms such as flat pricing (eat all you can for x-Euro). Changing the LL pricing structure is not sufficient. At the same time providers of leased-line infrastructure will be “forced” (i.e., by economics and bandwidth demand) to move to new types of leased bandwidth solutions and architectures in order to sustain the radio network capabilities; ADSL is expected to develop from 8(DL)/1(UL) Mbps to 25(DL)/3.5(UL) Mbps with ADSL2+; VDSL (UL/DL symmetric) from ca. 100 Mbps to 250 Mbps with VDSL2 (ITU-T G.993.2 standard).

Clearly a VDSL2-based infrastructure could support today’s HSPA/WiMAX requirements, as well as the initial bandwidth requirements of LTE. Although VDSL2-based networks are being deployed around Europe (and the world) it is not not widely available.

Another promising mean of supporting the radio-access bandwidth requirements is Fiber to the Premises (FTTP), such as for example offered by Verizon in certain areas of USA (Verizon FiOS Service). With Gigabit Passive Optical Network (GPON, ITU-T G.984 standard) maximum speeds of 2,400 Mbps (DL) and 1,200 Mbps (UL) can be expected. If available FTTP to the base station would be ideal – provided that the connection is priced no higher than a standard 2.048 Mbps leased line to day (i.e., €5,000 benchmark). Note that for a mobile operator it could be acceptable to pay a large 1-off installation fee which could partly finance the FTTP connection to the base station.

Cost & Pricing Expectations
It is in general accepted by industry analysts that broadband wireless services are not going to add much to mobile operators total service revenue growth. In optimistic revenue scenarios data revenue compensates for stagnating/falling voice revenues. EBITDA margins will (actually are!) under pressure and the operational expenses will be violently scrutinized.

Thus, mobile operators deploying UMTS/HSPA, WiMAX and eventually (in the short-term) LTE cannot afford to have its absolute Opex increase. Therefore, if a mobile-wireless operator has a certain backhaul Opex, it would try to keep it at the existing level or reduce it over time (to mitigate possible revenue decline).

For the backhaul leased-capacity providers this is sort of bad news (or good? as it forces them to become economically more efficient) …. as they would have to finance their new fixed higher-bandwidth infrastructures (i.e., VDSL or FTTP) with little additional revenue from the mobile-wireless operators.

Economically it is not clear whether mobile-wireless cost-structure expectations will meet the leased-capacity providers total-cost of deploying networks supporting the mobile-wireless bandwidth demand.

However, for the provider of leased fixed-bandwith, providing VDSL2 and/or FTTP to the residential market should finance their deployment model.

With more than 90% of all data traffic being consumed in-house/in-door and with VDSL2/Fiber-to-the-Home (FTTH) solutions being readily available to the Homes (in urban environments at least) of business as well as residential customers, will mobile-wireless LTE base stations be loaded to the extend that very-high capacity (i.e., beyond 50 Mbps) backhaul connections would be needed?

Source: http://harryshell.blogspot.de/2008/04/backhaul-pains.html

, , , , ,

2 Comments

Machine Intelligence Blog

It's not Magic! It is mainly Linear Algebra Applied Creatively!

AI Strategy & Policy

Artificial Intelligence Strategies & Policies Reviewed. How do we humans perceive AI?; Are we allergic to AI?, Have AI aversions? or do we love AI or is it hate? Maybe indifference? What about trust? More or is it less than in our peers? How to shape your Corporate AI Policy; How to formulate your Corporate AI Strategy. Lots of questions. Many answers leading to more questions.

Things I tend to forget

if I don't write it down, I have to google for it again

Wireless End-to-End

A blog serving the wireless communications industry